题目内容

已知函数f(x)=sin(ωx+
π
6
)+sin(ωx-
π
6
)-2cos2
ωx
2
,x∈R
(其中ω>0)
(I)求函数f(x)的值域;
(II)若对任意的a∈R,函数y=f(x),x∈(a,a+π]的图象与直线y=-1有且仅有两个不同的交点,试确定ω的值(不必证明),并求函数y=f(x),x∈R的单调增区间.
分析:(I)化简函数为一个角的一个三角函数的形式,根据正弦函数的有界性求出函数f(x)的值域;
(II)对任意的a∈R,函数y=f(x),x∈(a,a+π]的图象与直线y=-1有且仅有两个不同的交点,确定函数的周期,再确定ω的值,然后求函数y=f(x),x∈R的单调增区间.
解答:解:(I)解:f(x)=
3
2
sinωx+
1
2
cosωx+
3
2
sinωx-
1
2
cosωx-(cosωx+1)
=2(
3
2
sinωx-
1
2
cosωx)-1
=2sin(ωx-
π
6
)-1

-1≤sin(ωx-
π
6
)≤1
,得-3≤2sin(ωx-
π
6
)-1≤1
可知函数f(x)的值域为[-3,1].
(II)解:由题设条件及三角函数图象和性质可知,y=f(x)的周期为π,
又由ω>0,得
ω
,即得ω=2.
于是有f(x)=2sin(2x-
π
6
)-1
,再由2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
(k∈Z)

解得kπ-
π
6
≤x≤kπ+
π
3
(k∈Z)

B1所以y=f(x)的单调增区间为[kπ-
π
6
,kπ+
π
3
](k∈Z).
点评:本小题主要考查三角函数公式,三角函数图象和性质等基础知识,考查综合运用三角函数有关知识的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网