题目内容
已知函数f(x)=a-
.
(1)判断函数f(x)的单调性,并证明;
(2)若f(x)为奇函数,求实数a的值;
(3)在(2)的条件下,解不等式:f(log
x)+f(1)>0.
| 2 |
| 2x+1 |
(1)判断函数f(x)的单调性,并证明;
(2)若f(x)为奇函数,求实数a的值;
(3)在(2)的条件下,解不等式:f(log
| 1 |
| 4 |
(1)函数f(x)是增函数.下用定义法证明:
∵f(x)=a-
,∴x∈R,
在R内任取x1,x2,令x1<x2,
则f(x1)-f(x2)=a-
-(a-
)
=
>0,
∴f(x)在R上单调递增.
(2)∵函数f(x)=a-
为奇函数,
∴f(0)=a-
=a-1=0,
解得a=1.
(3)∵f(x)为奇函数,f(log
x)+f(1)>0,
∴f(log
x)>-f(1)=f(-1),
∵f(x)在R上单调递增,
∴log
x>-1,解得0<x<4.
∴不等式:f(log
x)+f(1)>0的解集为{x|0<x<4}.
∵f(x)=a-
| 2 |
| 2x+1 |
在R内任取x1,x2,令x1<x2,
则f(x1)-f(x2)=a-
| 2 |
| 2x1+1 |
| 2 |
| 2x2+1 |
=
| 2(2x1-2x2) |
| (2x1+1)(2x2+1) |
∴f(x)在R上单调递增.
(2)∵函数f(x)=a-
| 2 |
| 2x+1 |
∴f(0)=a-
| 2 |
| 20+1 |
解得a=1.
(3)∵f(x)为奇函数,f(log
| 1 |
| 4 |
∴f(log
| 1 |
| 4 |
∵f(x)在R上单调递增,
∴log
| 1 |
| 4 |
∴不等式:f(log
| 1 |
| 4 |
练习册系列答案
相关题目
已知函数f(x)=a-
,若f(x)为奇函数,则a=( )
| 1 |
| 2x+1 |
A、
| ||
| B、2 | ||
C、
| ||
| D、3 |