ÌâÄ¿ÄÚÈÝ
£¨1£©·Ö±ðÓò»µÈʽ×é±íʾw1ºÍw2£º
£¨2£©ÈôÇøÓòWÖе͝µãP£¨x£¬y£©µ½l1£¬l2µÄ¾àÀëÖ®»ýµÈÓÚ4£¬ÇóµãPµÄ¹ì¼£CµÄ·½³Ì£»
£¨3£©Éè²»¹ýÔµãµÄÖ±ÏßlÓëÇúÏßCÏཻÓÚMl£¬M2Á½µã£¬ÇÒÓëll£¬l2Èç·Ö±ð½»ÓÚM3£¬M4Á½µã£®ÇóÖ¤¡÷OMlM2µÄÖØÐÄÓë¡÷OM3M4µÄÖØÐÄÖØºÏ£®
¡¾Èý½ÇÐÎÖØÐÄ×ø±ê¹«Ê½£º¡÷ABCµÄ¶¥µã×ø±êΪA£¨xl£¬y1£©£¬B£¨x2£¬y2£©£¬C£¨x3£¬y3£©£¬Ôò¡÷ABCµÄÖØÐÄ×ø±êΪ£¨
| x1+x2+x3 |
| 3 |
| y1+y2+y3 |
| 3 |
·ÖÎö£º£¨1£©¸ù¾ÝͼÏó¿ÉÖªW1ÊÇÖ±Ïßy=2xºÍy=-2x×ó°ë²¿·ÖÖ®¼äµÄµãµÄ¼¯ºÏ£¬W2ÊÇy=2xºÍy=-2x×ó°ë²¿·ÖÖ®¼äµÄµãµÄ¼¯ºÏ½ø¶ø¿ÉµÃ´ð°¸£®
£¨2£©ÀûÓõ㵽ֱÏߵľàÀ빫ʽ£¬¸ù¾Ý¶¯µãP£¨x£¬y£©µ½l1£¬l2µÄ¾àÀëÖ®»ýµÈÓÚ4£¬½¨Á¢µÈʽ£¬ÇóµÃxºÍyµÄ¹ØÏµÊ½£¬¼´µãPµÄ¹ì¼£·½³Ì£®
£¨3£©ÏÈ¿´µ±Ö±ÏßlÓëxÖᴹֱʱÉèÖ±ÏßlµÄ·½³ÌΪx=a£¬½ø¶øÇóµÃM1M2£¬M3M4µÄÖеã×ø±ê£¬Åжϳö¡÷OM1M2£¬¡÷OM3M4µÄÖØÐÄ×ø±ê¶¼Îª£¨
£¬0£©£¬ÔÙ¿´
Ö±Ïßl1ÓëxÖá²»´¹Ö±Ê±£¬Éè³öÖ±ÏßlµÄ·½³ÌÓëPµÄ¹ì¼£·½³ÌÁªÁ¢£¬ÏûÈ¥y£¬Åбðʽ´óÓÚ0£¬ÉèM1£¬M2µÄ×ø±ê£¬±íʾ³öx1+x2ºÍy1+y2£¬ÉèM3£¬M4µÄ×ø±ê°ÑÖ±Ïßy=2xºÍy=mx+n±íʾ³öx3ºÍx4£¬ÇóµÃx3+x4=x1+x2£¬½ø¶øÇóµÃy3+y4=y1+y2£¬Íƶϳö¡÷OM1M2µÄÖØÐÄÓë¡÷OM3M4µÄÖØÐÄÖØºÏ£®
£¨2£©ÀûÓõ㵽ֱÏߵľàÀ빫ʽ£¬¸ù¾Ý¶¯µãP£¨x£¬y£©µ½l1£¬l2µÄ¾àÀëÖ®»ýµÈÓÚ4£¬½¨Á¢µÈʽ£¬ÇóµÃxºÍyµÄ¹ØÏµÊ½£¬¼´µãPµÄ¹ì¼£·½³Ì£®
£¨3£©ÏÈ¿´µ±Ö±ÏßlÓëxÖᴹֱʱÉèÖ±ÏßlµÄ·½³ÌΪx=a£¬½ø¶øÇóµÃM1M2£¬M3M4µÄÖеã×ø±ê£¬Åжϳö¡÷OM1M2£¬¡÷OM3M4µÄÖØÐÄ×ø±ê¶¼Îª£¨
| 2a |
| 3 |
Ö±Ïßl1ÓëxÖá²»´¹Ö±Ê±£¬Éè³öÖ±ÏßlµÄ·½³ÌÓëPµÄ¹ì¼£·½³ÌÁªÁ¢£¬ÏûÈ¥y£¬Åбðʽ´óÓÚ0£¬ÉèM1£¬M2µÄ×ø±ê£¬±íʾ³öx1+x2ºÍy1+y2£¬ÉèM3£¬M4µÄ×ø±ê°ÑÖ±Ïßy=2xºÍy=mx+n±íʾ³öx3ºÍx4£¬ÇóµÃx3+x4=x1+x2£¬½ø¶øÇóµÃy3+y4=y1+y2£¬Íƶϳö¡÷OM1M2µÄÖØÐÄÓë¡÷OM3M4µÄÖØÐÄÖØºÏ£®
½â´ð£º½â£º£¨1£©ÓÉͼÏó¿ÉÖªW1£º
£¬W2£º
£®
£¨2£©ÓÉÌâÒâÖª£¬
¡Á
=4µÃ|
-
|=1£¬ÓÖPÔÚWÄÚ£¬¹ÊÓÐ
-
=1£®
£¨3£©µ±Ö±ÏßlÓëxÖᴹֱʱ£¬¿ÉÉèÖ±ÏßlµÄ·½³ÌΪx=a£¨a¡ÙO£©£®ÓÉÓÚÖ±Ïßl£¬ÇúÏßC¹ØÓÚxÖá
¶Ô³Æ£¬ÇÒll1Óël2¹ØÓÚxÖá¶Ô³Æ£¬ÓÚÊÇM1M2£¬M3M4µÄÖеã×ø±ê¶¼Îª£¨a£¬0£©£¬
ËùÒÔ¡÷OM1M2£¬¡÷OM3M4µÄÖØÐÄ×ø±ê¶¼Îª£¨
£¬0£©£¬¼´ËüÃǵÄÖØÐÄÖØºÏ£®
µ±Ö±ÏßlÓëxÖá²»´¹Ö±Ê±£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=mx+n£¨n¡ÙO£©£¬
ÓÉ
£¬µÃ£¨4-m2£©x2-2mnx-n2-20=0£¬
ÓÉÖ±ÏßlÓëÇúÏßCÓÐÁ½¸ö²»Í¬½»µã£¬¿ÉÖª4-m2¡Ù0£¬ÇÒ
¡÷=£¨2mn£©2+4£¨4-m2£©£¨n2+20£©£¾0¡£¨1·Ö£©
ÉèM1£¬M2µÄ×ø±ê·Ö±ðΪ£¨xl£¬y1£©£¬£¨x2£¬y2£©£®
Ôòxl+x2=
£¬y1+y2¨Tm £¨xl+x2£©+2n
ÉèM3£¬M4µÄ×ø±ê·Ö±ðΪ£¨x3£¬x4£©£¬£¨x4£¬y4£©£®
ÓÉ
Óë
£¬µÃx3=
£¬x3=
´Ó¶øx3+x4=
=x1+x2
ËùÒÔy3+y4=m £¨x3+x4£©+2n=m £¨x1+x2£©+2n=y1+y2
ËùÒÔ
=
£¬
=
ÓÚÊÇAOM1 M2µÄÖØÐÄÓë¡÷OM3M4µÄÖØÐÄÒ²ÖØºÏ£®
|
|
£¨2£©ÓÉÌâÒâÖª£¬
| |2x-y | | ||
|
| |2x+y| | ||
|
| x2 |
| 5 |
| y2 |
| 20 |
| x2 |
| 5 |
| y2 |
| 20 |
£¨3£©µ±Ö±ÏßlÓëxÖᴹֱʱ£¬¿ÉÉèÖ±ÏßlµÄ·½³ÌΪx=a£¨a¡ÙO£©£®ÓÉÓÚÖ±Ïßl£¬ÇúÏßC¹ØÓÚxÖá
¶Ô³Æ£¬ÇÒll1Óël2¹ØÓÚxÖá¶Ô³Æ£¬ÓÚÊÇM1M2£¬M3M4µÄÖеã×ø±ê¶¼Îª£¨a£¬0£©£¬
ËùÒÔ¡÷OM1M2£¬¡÷OM3M4µÄÖØÐÄ×ø±ê¶¼Îª£¨
| 2a |
| 3 |
µ±Ö±ÏßlÓëxÖá²»´¹Ö±Ê±£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=mx+n£¨n¡ÙO£©£¬
ÓÉ
|
ÓÉÖ±ÏßlÓëÇúÏßCÓÐÁ½¸ö²»Í¬½»µã£¬¿ÉÖª4-m2¡Ù0£¬ÇÒ
¡÷=£¨2mn£©2+4£¨4-m2£©£¨n2+20£©£¾0¡£¨1·Ö£©
ÉèM1£¬M2µÄ×ø±ê·Ö±ðΪ£¨xl£¬y1£©£¬£¨x2£¬y2£©£®
Ôòxl+x2=
| 2mn |
| 4-m2 |
ÉèM3£¬M4µÄ×ø±ê·Ö±ðΪ£¨x3£¬x4£©£¬£¨x4£¬y4£©£®
ÓÉ
|
|
| n |
| 2-m |
| n |
| 2+m |
´Ó¶øx3+x4=
| 2mn |
| 4-m2 |
ËùÒÔy3+y4=m £¨x3+x4£©+2n=m £¨x1+x2£©+2n=y1+y2
ËùÒÔ
| 0+x1+x2 |
| 3 |
| 0+x 3+x4 |
| 3 |
| 0+y1+y2 |
| 3 |
| 0+y3+y4 |
| 3 |
ÓÚÊÇAOM1 M2µÄÖØÐÄÓë¡÷OM3M4µÄÖØÐÄÒ²ÖØºÏ£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌ⣮¿¼²éÁËѧÉú·ÖÎöÍÆÀíºÍÊýÐνáºÏµÄ˼ÏëµÄÔËÓÃ×ÛºÏÐÔ½ÏÇ¿£¬ÔËËãÁ¿½Ï´ó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿