题目内容

设函数f(x)=ex(sinx-cosx),若0≤x≤2011π,则函数f(x)的各极大值之和为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:先求出其导函数,利用导函数求出其单调区间,进而找到其极大值f(2kπ+π)=e2kπ+π[sin(2kπ+π)-cos(2kπ+π)]=e2kπ+π,再利用数列的求和方法来求函数f(x)的各极大值之和即可.
解答:因为函数f(x)=ex(sinx-cosx),
所以f'(x)=(ex)'(sinx-cosx)+ex(sinx-cosx)'=2exsinx,
∴x∈(2kπ,2kπ+π)时原函数递增,x∈(2kπ+π,2kπ+2π)时,函数递减.
故当x=2kπ+π时,f(x)取极大值,
其极大值为f(2kπ+π)=e2kπ+π[sin(2kπ+π)-cos(2kπ+π)]=e2kπ+π
又0≤x≤2011π,
∴函数f(x)的各极大值之和S=eπ+e+e+…+e2009π==
故选:A.
点评:本题主要考查利用导数研究函数的极值以及数列的求和.利用导数研究函数的单调性,求解函数的单调区间、极值、最值问题,是函数这一章最基本的知识,也是教学中的重点和难点,学生应熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网