题目内容

已知实数x,y满足条件
x≥0
y≥x
3x+4y≤12
,则z=
2y+2
x+1
的取值范围是(  )
分析:①画可行域②明确目标函数几何意义,目标函数z=
2y+2
x+1
=
y+1
x+1
,表示动点P(x,y)与定点M(-1,-1)连线斜率k的2倍③过M做直线与可行域相交可计算出直线PM斜率,从而得出所求目标函数范围.
解答:解:目标函数目标函数z=
2y+2
x+1
=
y+1
x+1
,表示动点P(x,y)与定点M(-1,-1)连线斜率k的两倍,
由图可知,当点P在A点处时,k 最大,最大值为:4;
当点P在B点处时,k 最小,最小值为:1;
∴1≤k≤4,所以 2≤2k≤8,从而则z=
2y+2
x+1
的取值范围是[2,8]
故选D.
点评:本题考查线性规划问题,难点在于目标函数几何意义,考查了利用几何思想解决代数式子的等价转化的思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网