题目内容
已知等差数列{an}为递增数列,且a2,a5是方程x2-12x+27=0的两根,数列{bn}的前n项和Tn=1-
bn.
(1)求数列{an}和{bn}的通项公式.
(2)若Cn=
,求数列{cn}的前n项和Sn.
| 1 |
| 2 |
(1)求数列{an}和{bn}的通项公式.
(2)若Cn=
| 3nbn |
| anan+1 |
(1)①∵等差数列{an}为递增数列,且a2,a5是方程x2-12x+27=0的两根,
∴a2+a5=12,a2a5=27,
∵d>0,∴a2=3,a5=9,
∴d=
=2,a1=1,
∴an=2n-1(n∈N*)
②∵Tn=1-
bn,
∴令n=1,得b1=
,
当n≥2时,Tn=1-
bn,Tn-1=1-
bn-1,两式相减得,bn=
bn-1-
bn,
∴
=
(n≥2),
数列{bn}是以
为首项,
为公比的等比数列.
∴bn=
•(
)n-1=2•
(n∈N*).
(2)∵bn=2•
,Cn=
,
∴Cn=
=
-
.
∴Sn=(1-
)+(
-
)+…+(
-
)=1-
=
.
∴a2+a5=12,a2a5=27,
∵d>0,∴a2=3,a5=9,
∴d=
| a5-a2 |
| 3 |
∴an=2n-1(n∈N*)
②∵Tn=1-
| 1 |
| 2 |
∴令n=1,得b1=
| 2 |
| 3 |
当n≥2时,Tn=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| bn |
| bn-1 |
| 1 |
| 3 |
数列{bn}是以
| 2 |
| 3 |
| 1 |
| 3 |
∴bn=
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3n |
(2)∵bn=2•
| 1 |
| 3n |
| 3nbn |
| anan+1 |
∴Cn=
3n×2×
| ||
| (2n-1)(2n+1) |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Sn=(1-
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
| 2n |
| 2n+1 |
练习册系列答案
相关题目