题目内容

设奇函数f(x)在(0,+∞)上为增函数,且f(-2)=0则不等式
f(-x)x
>0
的解集为
(-2,0)∪(0,2)
(-2,0)∪(0,2)
分析:根据函数为奇函数求出f(2)=0,再将不等式x f(x)<0分成两类加以讲义,再分别利用函数的单调性进行求解,可以得出相应的解集.
解答:解:∵f(x)为奇函数,且在(0,+∞)上是增函数,f(-2)=0,
∴f(2)=-f(-2)=0,在(0,+∞)内是增函数
f(-x)
x
>0
f(x)
x
<0
,则
x>0
f(x)<0=f(2)
x<0
f(x)>0=f(-2)

根据在(-∞,0)和(0,+∞)内是都是增函数
解得:x∈(-2,0)∪(0,2)
故答案为:(-2,0)∪(0,2).
点评:本题主要考查了函数的奇偶性的性质,以及函数单调性的应用等有关知识,属于基础题.结合函数的草图,会对此题有更深刻的理解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网