题目内容
设奇函数f(x)在(0,+∞)上为增函数,且f(-2)=0则不等式
>0的解集为
| f(-x) | x |
(-2,0)∪(0,2)
(-2,0)∪(0,2)
.分析:根据函数为奇函数求出f(2)=0,再将不等式x f(x)<0分成两类加以讲义,再分别利用函数的单调性进行求解,可以得出相应的解集.
解答:解:∵f(x)为奇函数,且在(0,+∞)上是增函数,f(-2)=0,
∴f(2)=-f(-2)=0,在(0,+∞)内是增函数
∴
>0即
<0,则
或
根据在(-∞,0)和(0,+∞)内是都是增函数
解得:x∈(-2,0)∪(0,2)
故答案为:(-2,0)∪(0,2).
∴f(2)=-f(-2)=0,在(0,+∞)内是增函数
∴
| f(-x) |
| x |
| f(x) |
| x |
|
|
根据在(-∞,0)和(0,+∞)内是都是增函数
解得:x∈(-2,0)∪(0,2)
故答案为:(-2,0)∪(0,2).
点评:本题主要考查了函数的奇偶性的性质,以及函数单调性的应用等有关知识,属于基础题.结合函数的草图,会对此题有更深刻的理解.
练习册系列答案
相关题目
设奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时,t的取值范围是( )
| A、-2≤t≤2 | ||||
B、-
| ||||
| C、t≥2或t≤-2或t=0 | ||||
D、t≥
|