ÌâÄ¿ÄÚÈÝ
| x2 |
| x+m |
£¨1£©Çó¸Ãº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÊýÁÐ{an}ÖУ¬Èôa1=1£¬SnΪÊýÁÐ{an}µÄǰnÏîºÍ£¬ÇÒÂú×ãan=f£¨Sn£©£¨n¡Ý2£©£¬
Ö¤Ã÷ÊýÁÐ{
| 1 |
| Sn |
£¨3£©ÁíÓÐÒ»ÐÂÊýÁÐ{bn}£¬Èô½«ÊýÁÐ{bn}ÖеÄËùÓÐÏÿһÐбÈÉÏÒ»ÐжàÒ»ÏîµÄ¹æÔòÅųÉÈçÏÂÊý±í£º¼Ç±íÖеĵÚÒ»ÁÐÊýb1£¬b2£¬b4£¬b7£¬¡£¬¹¹³ÉµÄÊýÁм´ÎªÊýÁÐ{an}£¬ÉϱíÖУ¬Èô´ÓµÚÈýÐÐÆð£¬Ã¿Ò»ÐÐÖеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¾ù¹¹³ÉµÈ±ÈÊýÁУ¬ÇÒ¹«±ÈΪͬһ¸öÕýÊý£®µ±b81=-
| 4 |
| 91 |
·ÖÎö£º£¨1£©°ÑµãµÄ×ø±ê´úÈëÇó³öm¼´¿ÉÇó¸Ãº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÏÈÀûÓÃÌõ¼þÇó³öan=
£®ÔÙ°Ñan»»µôÕûÀíºó¼´¿ÉÖ¤Ã÷ÊýÁÐ{
}³ÉµÈ²îÊýÁУ¬È»ºóÀûÓÃÇó³öµÄSnÀ´ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÏÈÇó³öb81ËùÔÚλÖã¬ÔÙÀûÓÃÿһÐÐÖеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¾ù¹¹³ÉµÈ±ÈÊýÁУ¬Çó³ö¹«±È£¬ÔÙ´úÈëÇóºÍ¹«Ê½¼´¿É£®
£¨2£©ÏÈÀûÓÃÌõ¼þÇó³öan=
| Sn2 |
| Sn-2 |
| 1 |
| Sn |
£¨3£©ÏÈÇó³öb81ËùÔÚλÖã¬ÔÙÀûÓÃÿһÐÐÖеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¾ù¹¹³ÉµÈ±ÈÊýÁУ¬Çó³ö¹«±È£¬ÔÙ´úÈëÇóºÍ¹«Ê½¼´¿É£®
½â´ð£º½â£¨1£©Óɺ¯Êýf(x)=
µÄͼÏó¾¹ýµã£¨4£¬8£©µÃ£ºm=-2£¬
º¯ÊýµÄ½âÎöʽΪf(x)=
£¨2·Ö£©
£¨2£©ÓÉÒÑÖª£¬µ±n¡Ý2ʱ£¬an=f£¨Sn£©£¬¼´an=
£®
ÓÖSn=a1+a2++an£¬
ËùÒÔSn-Sn-1=
£¬¼´2Sn+Sn•Sn-1=2Sn-1£¬£¨5·Ö£©
ËùÒÔ
-
=
£¬£¨7·Ö£©
ÓÖS1=a1=1£®
ËùÒÔÊýÁÐ{
}ÊÇÊ×ÏîΪ1£¬¹«²îΪ
µÄµÈ²îÊýÁУ®
ÓÉÉÏ¿ÉÖª
=1+
(n-1)=
£¬
¼´Sn=
£®
ËùÒÔµ±n¡Ý2ʱ£¬an=Sn-Sn-1=
-
=-
£®
Òò´Ëan=
£¨9·Ö£©
£¨3£©ÉèÉϱíÖдӵÚÈýÐÐÆð£¬Ã¿ÐеĹ«±È¶¼Îªq£¬ÇÒq£¾0£®
ÒòΪ1+2++12=
=78£¬
ËùÒÔ±íÖеÚ1ÐÐÖÁµÚ12Ðй²º¬ÓÐÊýÁÐ{bn}µÄǰ78Ï
¹Êb81ÔÚ±íÖеÚ13ÐеÚÈýÁУ¬£¨11·Ö£©
Òò´Ëb81=a13q2=-
£®
ÓÖa13=-
£¬
ËùÒÔq=2£¨13·Ö£©
¼Ç±íÖеÚk£¨k¡Ý3£©ÐÐËùÓÐÏîµÄºÍΪS£¬
ÔòS=
=-
•
=
(1-2k)(k¡Ý3)£¨16·Ö£©
| x2 |
| x+m |
º¯ÊýµÄ½âÎöʽΪf(x)=
| x2 |
| x-2 |
£¨2£©ÓÉÒÑÖª£¬µ±n¡Ý2ʱ£¬an=f£¨Sn£©£¬¼´an=
| Sn2 |
| Sn-2 |
ÓÖSn=a1+a2++an£¬
ËùÒÔSn-Sn-1=
| Sn2 |
| Sn-2 |
ËùÒÔ
| 1 |
| Sn |
| 1 |
| Sn-1 |
| 1 |
| 2 |
ÓÖS1=a1=1£®
ËùÒÔÊýÁÐ{
| 1 |
| Sn |
| 1 |
| 2 |
ÓÉÉÏ¿ÉÖª
| 1 |
| Sn |
| 1 |
| 2 |
| n+1 |
| 2 |
¼´Sn=
| 2 |
| n+1 |
ËùÒÔµ±n¡Ý2ʱ£¬an=Sn-Sn-1=
| 2 |
| n+1 |
| 2 |
| n |
| 2 |
| n(n+1) |
Òò´Ëan=
|
£¨3£©ÉèÉϱíÖдӵÚÈýÐÐÆð£¬Ã¿ÐеĹ«±È¶¼Îªq£¬ÇÒq£¾0£®
ÒòΪ1+2++12=
| 12¡Á13 |
| 2 |
ËùÒÔ±íÖеÚ1ÐÐÖÁµÚ12Ðй²º¬ÓÐÊýÁÐ{bn}µÄǰ78Ï
¹Êb81ÔÚ±íÖеÚ13ÐеÚÈýÁУ¬£¨11·Ö£©
Òò´Ëb81=a13q2=-
| 4 |
| 91 |
ÓÖa13=-
| 2 |
| 13¡Á14 |
ËùÒÔq=2£¨13·Ö£©
¼Ç±íÖеÚk£¨k¡Ý3£©ÐÐËùÓÐÏîµÄºÍΪS£¬
ÔòS=
| ak(1-qk) |
| 1-q |
| 2 |
| k(k+1) |
| (1-2k) |
| 1-2 |
| 2 |
| k(k+1) |
µãÆÀ£º±¾ÌâÊǶÔÊýÁкͺ¯ÊýµÄ×ۺϿ¼²é£®Éæ¼°µ½µÈ±ÈÊýÁеÄÇóºÍÎÊÌ⣬ÔڶԵȱÈÊýÁÐÇóºÍʱ£¬Ò»¶¨ÒªÏÈÅжϹ«±ÈµÄȡֵ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿