题目内容

已知函数f(x)=
1
3
x3-ax2-x+1(a∈R)

(1)若函数f(x)在x=x1,x=x2处取得极值,且|x1-x2|=2,求a的值及f(x)的单调区间;
(2)若0<a<
1
2
,求曲线f(x)与g(x)=
1
2
x2-(2a+1)x+
5
6
(-2≤x≤0)
的交点个数.
(1)∵函数f(x)=
1
3
x3-ax2-x+1(a∈R)

∴f′(x)=x2-2ax-1,
∵函数f(x)在x=x1,x=x2处取得极值,
∴x1+x2=2a,x1•x2=-1,
∵|x1-x2|=2,
(x1+x2 2-4x1x2
=
4a2+4
=2,
∴a=0.
∴f′(x)=x2-1,
由f′(x)=x2-1>0,得x<-1,或x>1;
由f′(x)=x2-1<0,得-1<x<1,
∴f(x)在(-∞,-1)增,在(-1,1)减,在(1,+∞)增.
(2)设 F(x)=f(x)-g(x),
f(x)=
1
3
x3-ax2-x+1(a∈R)

g(x)=
1
2
x2-(2a+1)x+
5
6
,(-2≤x≤0),
∴F(x)=
1
3
x3-(a+
1
2
)x2+2ax+
1
6

∴F′(x)=x2-(2a+1)x+2a=(x-1)(x-2a),
0<a<
1
2
,-2≤x≤0,
∴F′(x)=x2-(2a+1)x+2a=(x-1)(x-2a)>0,
F(x)在[-2,0]上是增函数,
∵F(-2)=-
8
3
-4a-2
-4a+
1
6
<0,
F(0)=
1
6
>0

∴曲线f(x)与g(x)=
1
2
x2-(2a+1)x+
5
6
,(-2≤x≤0)的交点个数是1个.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网