题目内容
已知数列{an}满足a1+2a2+3a3+…+nan=n(n+1)(n+2),则它的前n项和Sn=
.
| 3n2+9n |
| 2 |
| 3n2+9n |
| 2 |
分析:由a1+2a2+3a3+…+nan=n(n+1)(n+2),知a1+2a2+3a3+…+(n-1)an-1=(n-1)n(n+1),所以nan=3n(n+1),即an=3n+3.由此能求出它的前n项和Sn.
解答:解:∵a1+2a2+3a3+…+nan=n(n+1)(n+2),①
∴a1+2a2+3a3+…+(n-1)an-1=(n-1)n(n+1),②
①-②,得nan=3n(n+1),
∴an=3n+3.
∴Sn=a1+a2+a3+…+an
=(3×1+3)+(3×2+3)+(3×3+3)+…+(3n+3)
=3(1+2+3+…+n)+3n
=3×
+3n
=
.
故答案为:
.
∴a1+2a2+3a3+…+(n-1)an-1=(n-1)n(n+1),②
①-②,得nan=3n(n+1),
∴an=3n+3.
∴Sn=a1+a2+a3+…+an
=(3×1+3)+(3×2+3)+(3×3+3)+…+(3n+3)
=3(1+2+3+…+n)+3n
=3×
| n(n+1) |
| 2 |
=
| 3n2+9n |
| 2 |
故答案为:
| 3n2+9n |
| 2 |
点评:本题考查等差数列的通项公式和前n项和公式,解题时要认真审题,仔细解答,注意化归与转化思想的合理运用.
练习册系列答案
相关题目