题目内容
已知数列{an}的前n项和Sn=pn+q(p≠0且p≠1),求证q=-1是数列{an}成等比数列的充要条件.
证明:当n=1时,a1=S1=p+q;
当n≥2时,an=Sn-Sn-1=(p-1)•pn-1.
由于p≠0,p≠1,
∴当n≥2时,{an}是等比数列.要使{an}(n∈N*)是等比数列,
则
=p,即(p-1)•p=p(p+q),
∴q=-1,即{an}是等比数列的必要条件是p≠0且p≠1且q=-1.
再证充分性:
当p≠0且p≠1且q=-1时,Sn=pn-1,
an=(p-1)•pn-1,
=p(n≥2),
∴{an}是等比数列.
分析:先求出a1的值,再由n≥2时,an=Sn-Sn-1=(p-1)•pn-1进而可判定n≥2时,{an}是等比数列,最后再验证当n=1时q=-1时可满足,{an}是等比数列,从而{an}是等比数列的必要条件是p≠0且p≠1且q=-1;当p≠0且p≠1且q=-1时,根据Sn=pn-1可求出an=(p-1)•pn-1,进而得到
=p即{an}是等比数列,即可知q=-1是{an}是等比数列的充分条件.
点评:本题主要考查等比数列的充要条件,考查基础知识的综合运用.
当n≥2时,an=Sn-Sn-1=(p-1)•pn-1.
由于p≠0,p≠1,
∴当n≥2时,{an}是等比数列.要使{an}(n∈N*)是等比数列,
则
∴q=-1,即{an}是等比数列的必要条件是p≠0且p≠1且q=-1.
再证充分性:
当p≠0且p≠1且q=-1时,Sn=pn-1,
an=(p-1)•pn-1,
∴{an}是等比数列.
分析:先求出a1的值,再由n≥2时,an=Sn-Sn-1=(p-1)•pn-1进而可判定n≥2时,{an}是等比数列,最后再验证当n=1时q=-1时可满足,{an}是等比数列,从而{an}是等比数列的必要条件是p≠0且p≠1且q=-1;当p≠0且p≠1且q=-1时,根据Sn=pn-1可求出an=(p-1)•pn-1,进而得到
点评:本题主要考查等比数列的充要条件,考查基础知识的综合运用.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |