题目内容
在△ABC中,
=
,
=
,
=λ
(0<λ<1),
=μ
(0<μ<1),BE与CD交于点P,设
=x
+y
,其中已求得x=λ•
,则y=
| AB |
| a |
| AC |
| b |
| AD |
| a |
| AE |
| b |
| AP |
| a |
| b |
| 1-μ |
| 1-λμ |
μ•
| 1-λ |
| 1-λμ |
μ•
.| 1-λ |
| 1-λμ |
分析:根据向量加法的三角形法则得到
=
-
=
-(x
+y
)=-x
+(1-y)
,
=
-
=(x
+y
)-λ
=(x-λ)
+y
,结合
与
共线,得到-x×y=(1-y)(x-λ),其中x=λ•
,解得y的值即出.
| PC |
| AC |
| AP |
| b |
| a |
| b |
| a |
| b |
| DP |
| AP |
| AD |
| a |
| b |
| a |
| a |
| b |
| PC |
| DP |
| 1-μ |
| 1-λμ |
解答:解:∵
=
-
=
-(x
+y
)=-x
+(1-y)
,
又
=
-
=(x
+y
)-λ
=(x-λ)
+y
,
∵
与
共线,
∴-x×y=(1-y)(x-λ),其中x=λ•
,
解得:y=μ•
.
故答案为:μ•
.
| PC |
| AC |
| AP |
| b |
| a |
| b |
| a |
| b |
又
| DP |
| AP |
| AD |
| a |
| b |
| a |
| a |
| b |
∵
| PC |
| DP |
∴-x×y=(1-y)(x-λ),其中x=λ•
| 1-μ |
| 1-λμ |
解得:y=μ•
| 1-λ |
| 1-λμ |
故答案为:μ•
| 1-λ |
| 1-λμ |
点评:本小题主要考查向量的线性运算性质及几何意义、向量共线的条件等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目