题目内容
已知等差数列{an}的公差d>0,首项a1>0,Sn=| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| an-1•an |
| lim |
| n→∞ |
分析:设bn=
,则bn=
.由此能够导出Sn=(
-
) ×
,由此能够求出
Sn的值.
| 1 |
| anan+1 |
| ||||
| d |
| 1 |
| a1 |
| 1 |
| an |
| 1 |
| d |
| lim |
| n→∞ |
解答:解:设bn=
,则bn=
.
∴Sn=[
-
+
-
+…+
+
] ×
=(
-
) ×
,
∵a1>0,d>0,
∴
=0,
∴
Sn=
.
答案:
.
| 1 |
| anan+1 |
| ||||
| d |
∴Sn=[
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an-1 |
| 1 |
| an |
| 1 |
| d |
=(
| 1 |
| a1 |
| 1 |
| an |
| 1 |
| d |
∵a1>0,d>0,
∴
| lim |
| n→∞ |
| 1 |
| an |
∴
| lim |
| n→∞ |
| 1 |
| a1d |
答案:
| 1 |
| a1d |
点评:本题考查数列的性质和应用,解题时要注意公式的灵活运用.
练习册系列答案
相关题目