题目内容
对于三次函数f(x)=ax3+bx2+cx+d,定义y=f″(x)是函数y=f′(x)的导函数.若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现:任何一个三次函数既有拐点,又有对称中心,且拐点就是对称中心.根据这一发现,对于函数g(x)=2x3-6x2+3x+2+2013sin(x-1),则g(-2011)+g(-2010)+…+g(2012)+g(2013)的值为
4025
4025
.分析:令f(x)=2x3-6x2+3x+2,研究其对称中心,h(x)=2013sin(x-1),研究其奇偶性,即可得出.
解答:解:令f(x)=2x3-6x2+3x+2,
则f′(x)=6x2-12x+3,f″(x)=12x-12,
令f″(x)=0,解得x=1,
∴x=1是函数f(x)的拐点,既是其对称中心.
∴f(-2011)+f(2013)=2f(1)=f(-2010)+f(2012)=…=f(0)+f(2),
∴f(-2011)+f(-2010)+…+f(2012)+f(2013)=4025f(1)=4025.
令h(x)=2013sin(x-1),
则h(-2011)+h(-2010)+…+h(2012)+h(2013)=2013[sin(-2012)+sin(-2011)+…+sin2011+sin2012]=0,
∴g(-2011)+g(-2010)+…+g(2012)+g(2013)
=f(-2011)+f(-2010)+…+f(2012)+f(2013)+h(-2011)+h(-2010)+…+h(2012)+f(2013)
=4025+0=4025.
故答案:4025.
则f′(x)=6x2-12x+3,f″(x)=12x-12,
令f″(x)=0,解得x=1,
∴x=1是函数f(x)的拐点,既是其对称中心.
∴f(-2011)+f(2013)=2f(1)=f(-2010)+f(2012)=…=f(0)+f(2),
∴f(-2011)+f(-2010)+…+f(2012)+f(2013)=4025f(1)=4025.
令h(x)=2013sin(x-1),
则h(-2011)+h(-2010)+…+h(2012)+h(2013)=2013[sin(-2012)+sin(-2011)+…+sin2011+sin2012]=0,
∴g(-2011)+g(-2010)+…+g(2012)+g(2013)
=f(-2011)+f(-2010)+…+f(2012)+f(2013)+h(-2011)+h(-2010)+…+h(2012)+f(2013)
=4025+0=4025.
故答案:4025.
点评:本题考查了三次函数的对称性、正弦函数的奇偶性,属于难题.
练习册系列答案
相关题目