题目内容
【题目】如图,某公园摩天轮的半径为
,圆心距地面的高度为
,摩天轮做匀速转动,每
转一圈,摩天轮上的点
的起始位置在最低点处.
(1)已知在时刻
时
距离地面的高度
,(其中
),求
时
距离地面的高度;
(2)当离地面
以上时,可以看到公园的全貌,求转一圈中有多少时间可以看到公园的全貌?
![]()
【答案】(1)70;(2)转一圈中有
钟时间可以看到公园全貌.
【解析】分析:(1)由实际问题求出三角函数中的参数
,
,及周期
,利用三角函数的周期公式求出
,通过初始位置求出
,求出
,将
用2017代替求出2017min时点P距离地面的高度;
(2)由(1)知
,
依题意,
,求出
的范围,即可求得转一圈中有
钟时间可以看到公园全貌.
详解:
(1)依题意,
,则
,
且
,
故
,
∴![]()
∴![]()
(2)由(1)知
,
依题意,
,
∴![]()
![]()
∵
,
∴转一圈中有
钟时间可以看到公园全貌.
练习册系列答案
相关题目