题目内容

如图,AB是圆O的直径,PA⊥圆O所在的平面,C是圆O上的点.
(1)求证:BC⊥平面PAC;
(2)若Q为PA的中点,G为△AOC的重心,求证:QG平面PBC.
精英家教网
(1)AB是圆O的直径,PA⊥圆所在的平面,可得PA⊥BC,
C是圆O上的点,由直径对的圆周角等于90°,可得BC⊥AC.
再由AC∩PA=A,利用直线和平面垂直的判定定理可得BC⊥平面PAC.
(2)若Q为PA的中点,G为△AOC的重心,连接OG并延长AC与点M,则由重心的性质可得M为AC的中点.
故OM是△ABC的中位线,QM是△PAC的中位线,故有OMBC,QMPC.
而OM和QM是平面OQM内的两条相交直线,AC和BC是平面PBC内的两条相交直线,故平面OQM平面PBC.
又QG?平面OQM,∴QG平面PBC.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网