题目内容
已知椭圆C:| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
| 2 |
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于A,B两点,设P为椭圆上一点,且满足
| OA |
| OB |
| OP |
| PA |
| PB |
2
| ||
| 3 |
分析:(Ⅰ)由题意知e=
=
,所以e2=
=
=
.由此能求出椭圆C的方程.
(Ⅱ)由题意知直线AB的斜率存在.设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),由
得(1+2k2)x2-8k2x+8k2-2=0再由根的判别式和嘏达定理进行求解.
| c |
| a |
| ||
| 2 |
| c2 |
| a2 |
| a2-b2 |
| a2 |
| 1 |
| 2 |
(Ⅱ)由题意知直线AB的斜率存在.设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),由
|
解答:解:(Ⅰ)由题意知e=
=
,所以e2=
=
=
.
即a2=2b2.(2分)
又因为b=
=1,所以a2=2,
故椭圆C的方程为
+y2=1.(4分)
(Ⅱ)由题意知直线AB的斜率存在.设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),
由
得(1+2k2)x2-8k2x+8k2-2=0.△=64k4-4(2k2+1)(8k2-2)>0,k2<
.(6分)
x1+x2=
,x1•x2=
∵
+
=t
∴(x1+x2,y1+y2)=t(x,y),
∴x=
=
,y=
=
[k(x1+x2)-4k]=
∵点P在椭圆上,∴
+2
=2,∴16k2=t2(1+2k2).(8分)
∵|
-
|<
,∴
|x1-x2|<
,∴(1+k2)[(x1+x2)2-4x1•x2]<
∴(1+k2)[
-4•
]<
,∴(4k2-1)(14k2+13)>0,∴k2>
.(10分)
∴
<k2<
,∵16k2=t2(1+2k2),∴t2=
=8-
,
∴-2<t<-
或
<t<2,∴实数t取值范围为(-2,-
)∪(
,2).(12分)
| c |
| a |
| ||
| 2 |
| c2 |
| a2 |
| a2-b2 |
| a2 |
| 1 |
| 2 |
即a2=2b2.(2分)
又因为b=
| ||
|
故椭圆C的方程为
| x2 |
| 2 |
(Ⅱ)由题意知直线AB的斜率存在.设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),
由
|
| 1 |
| 2 |
x1+x2=
| 8k2 |
| 1+2k2 |
| 8k2-2 |
| 1+2k2 |
| OA |
| OB |
| OP |
∴x=
| x1+x2 |
| t |
| 8k2 |
| t(1+2k2) |
| y1+y2 |
| t |
| 1 |
| t |
| -4k |
| t(1+2k2) |
∵点P在椭圆上,∴
| (8k2)2 |
| t2(1+2k2)2 |
| (-4k)2 |
| t2(1+2k2)2 |
∵|
| PA |
| PB |
2
| ||
| 3 |
| 1+k2 |
2
| ||
| 3 |
| 20 |
| 9 |
∴(1+k2)[
| 64k4 |
| (1+2k2)2 |
| 8k2-2 |
| 1+2k2 |
| 20 |
| 9 |
| 1 |
| 4 |
∴
| 1 |
| 4 |
| 1 |
| 2 |
| 16k2 |
| 1+2k2 |
| 8 |
| 1+2k2 |
∴-2<t<-
2
| ||
| 3 |
2
| ||
| 3 |
2
| ||
| 3 |
2
| ||
| 3 |
点评:本题考查椭圆方程的求法和求实数t取值范围.解题时要认真审题,注意挖掘题设中的隐含条件,合理地运用根的判别式和韦达定理进行解题.
练习册系列答案
相关题目