题目内容
| 3 |
| 4 |
| 8 |
| 3 |
(I)求异面直线AE与PC所成角的余弦值;
(Ⅱ)求点D到平面PBA的距离;
(Ⅲ)棱PC上是否存在点F,使DF⊥AC?若存在,求
| PF |
| FC |
分析:(I)以AB为x轴,以AC为y轴,以AP为z轴,建立空间直角坐标系,由题设知
=(1,1,0),
=(0,2,-4),由此能求出异面直线AE与PC所成角的余弦值.
(Ⅱ)由底面ABCD是梯形,AD∥BC,且AD=
BC,AB⊥AC,AB=AC=2,知D(-
,
,0),故
=(-
,
,0),由平面PBA的法向量
=
=(0,2,0),能求出点D到平面PBA的距离.
(Ⅲ)设棱PC上是存在点F,使DF⊥AC时
=t,由
=(0,2,-4),知
=(0,2t,-4t),由此能导出棱PC上是存在点F,使DF⊥AC,此时
=3.
| AE |
| PC |
(Ⅱ)由底面ABCD是梯形,AD∥BC,且AD=
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
| 2 |
| AD |
| 3 |
| 2 |
| 3 |
| 2 |
| n |
| AC |
(Ⅲ)设棱PC上是存在点F,使DF⊥AC时
| ||
|
| PC |
| PF |
| PF |
| FC |
解答:
解:(I)以AB为x轴,以AC为y轴,以AP为z轴,建立空间直角坐标系,
∵四棱锥P-ABCD中,AB=AC=2,PA⊥平面ABCD,E是BC中点,
∴E(1,1,0),C(0,2,0),
∵四面体P-BCA的体积为
,
∴
×
×2×2×AP=
,∴AP=4,∴P(0,0,4),
∴
=(1,1,0),
=(0,2,-4),
设异面直线AE与PC所成角为α,
则cosα=|cos<
,
>|=|
|=|
|=
.
(Ⅱ)∵底面ABCD是梯形,AD∥BC,且AD=
BC,AB⊥AC,AB=AC=2,
∴BC=
=2
,AD=
×2
=
,
∴D(-
,
,0),∴
=(-
,
,0),
∵平面PBA的法向量
=
=(0,2,0),
∴点D到平面PBA的距离d=
=
=
.
(Ⅲ)设棱PC上是存在点F,使DF⊥AC时
=t,
∵
=(0,2,-4),∴
=(0,2t,-4t),
∴
=
+
=(
,-
,4)+(0,2t,-4t)=(
,2t-
,4-4t),
∵
=(0,2,0),
⊥
,
∴0+4t-3+0=0,t=
,
∴
=3.
故棱PC上是存在点F,使DF⊥AC,此时
=3.
∵四棱锥P-ABCD中,AB=AC=2,PA⊥平面ABCD,E是BC中点,
∴E(1,1,0),C(0,2,0),
∵四面体P-BCA的体积为
| 8 |
| 3 |
∴
| 1 |
| 3 |
| 1 |
| 2 |
| 8 |
| 3 |
∴
| AE |
| PC |
设异面直线AE与PC所成角为α,
则cosα=|cos<
| AE |
| PC |
| ||||
|
|
| 0+2+0 | ||||
|
| ||
| 10 |
(Ⅱ)∵底面ABCD是梯形,AD∥BC,且AD=
| 3 |
| 4 |
∴BC=
| 4+4 |
| 2 |
| 3 |
| 4 |
| 2 |
3
| ||
| 2 |
∴D(-
| 3 |
| 2 |
| 3 |
| 2 |
| AD |
| 3 |
| 2 |
| 3 |
| 2 |
∵平面PBA的法向量
| n |
| AC |
∴点D到平面PBA的距离d=
|
| ||||
|
|
| |0+3+0| |
| 2 |
| 3 |
| 2 |
(Ⅲ)设棱PC上是存在点F,使DF⊥AC时
| ||
|
∵
| PC |
| PF |
∴
| DF |
| DP |
| PF |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
∵
| AC |
| DF |
| AC |
∴0+4t-3+0=0,t=
| 3 |
| 4 |
∴
| ||
|
故棱PC上是存在点F,使DF⊥AC,此时
| PF |
| FC |
点评:本题考查异面直线所成角的余弦值的求法,点到平面的距离的计算,探索线段上点的存在性.综合性强,难度大,有一定的探索性,是高考的重点.解题时要认真审题,仔细解答,注意向量法的合理运用.
练习册系列答案
相关题目