题目内容
正数数列{an}的前n项和为Sn,且4Sn=(an+1)2
①试求数列{an}的通项公式.
②设bn=
,{bn}前n项和Sn,求证:Sn<
.
①试求数列{an}的通项公式.
②设bn=
| 1 |
| an•an+1 |
| 1 |
| 2 |
分析:①依题意,可求得a1=1;当n≥2时,易求an-an-1=2,从而知数列{an}是首项为1,公差为2的等差数列,继而可求其通项;
②利用裂项法可求得bn=
(
-
),从而可求其前n项和.
②利用裂项法可求得bn=
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:解:①∵4Sn=(an+1)2,(1)
∴4a1=(a1+1)2,即得a1=1;
当n≥2时,4Sn-1=(an-1+1)2,(2)
(1)-(2)得:4an=an2+2an-an-12-2an-1,
∴(an+an-1)(an-an-1)=2(an+an-1),又an>0,
∴an-an-1=2,
∴数列{an}是首项为1,公差为2的等差数列,
∴an=1+(n-1)×2=2n-1.
②证明:∵bn=
=
=
(
-
),
∴Sn=b1+b2+…+bn
=
(1-
+
-
+…+
-
)
=
(1-
)
=
<
(证毕).
∴4a1=(a1+1)2,即得a1=1;
当n≥2时,4Sn-1=(an-1+1)2,(2)
(1)-(2)得:4an=an2+2an-an-12-2an-1,
∴(an+an-1)(an-an-1)=2(an+an-1),又an>0,
∴an-an-1=2,
∴数列{an}是首项为1,公差为2的等差数列,
∴an=1+(n-1)×2=2n-1.
②证明:∵bn=
| 1 |
| an•an+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Sn=b1+b2+…+bn
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
=
| n |
| 2n+1 |
| 1 |
| 2 |
点评:本题考查数列的求和,着重考查等差数列的判定与其通项公式的应用,考查裂项法求和,属于中档题.
练习册系列答案
相关题目