题目内容

已知函数f(x)=lnx,g(x)=
1
2
x2+t(t
为常数),直线l与函数f(x),g(x)的图象都相切,且l与函数f(x)图象的切点的横坐标为1,则t的值为______.
f′(x)=
1
x
,f′(1)=1,故直线l的斜率为1,
切点为(1,f(1)),即(1,0),
∴直线l:y=x-1 ①
又∵g′(x)=x,直线l:y=x-1与函数g(x)的图象都相切
∴令g′(x)=1,解得x=1,即切点为(1,
1
2
+t)
∴l:y-(
1
2
+t)=x-1,即y=x-
1
2
+t ②
比较①和②的系数得-
1
2
+t=-1,∴t=-
1
2

故答案为:-
1
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网