题目内容
已知函数f(x)=
,数列{an}满足a1=1,an+1=f(an)(n∈N+).
(1)求数列{an}的通项公式an;
(2)若数列{bn}满足bn=
anan+1•3n,Sn=b1+b2+…+bn,求Sn.
| x |
| x+3 |
(1)求数列{an}的通项公式an;
(2)若数列{bn}满足bn=
| 1 |
| 2 |
(1)由已知,an+1=
,所以
=
+1,
∴
+
=3(
+
),
∴数列{
+
}是以1+
=
为首项,以3为公比的等比数列.
∴
+
=
•3 n-1=
,
=
所以an=
(2)bn=
anan+1•3n=
=
-
Sn=b1+b2+…+bn=
-
+(
-
)+…+(
-
)=
-
| an |
| an+3 |
| 1 |
| an+1 |
| 3 |
| an |
∴
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| 2 |
∴数列{
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
∴
| 1 |
| an |
| 1 |
| 2 |
| 3 |
| 2 |
| 3n |
| 2 |
| 1 |
| an |
| 3n-1 |
| 2 |
所以an=
| 2 |
| 3n-1 |
(2)bn=
| 1 |
| 2 |
| 2•3n |
| (3n-1)(3n+1-1) |
| 1 |
| 3n-1 |
| 1 |
| 3n+1-1 |
Sn=b1+b2+…+bn=
| 1 |
| 31-1 |
| 1 |
| 32-1 |
| 1 |
| 32-1 |
| 1 |
| 33-1 |
| 1 |
| 3n-1 |
| 1 |
| 3n+1-1 |
| 1 |
| 2 |
| 1 |
| 3n+1-1 |
练习册系列答案
相关题目