题目内容
【题目】如图,在正三棱柱
中,点
,
分别是棱
,
上的点,且
.
![]()
(Ⅰ)证明:平面
平面
;
(Ⅱ)若
,求二面角
的余弦值.
【答案】(1)见解析(2)![]()
【解析】【试题分析】(1)先运用面面垂直的性质定理证明
平面
,再运用面面垂直的判定定理进行分析推证平面
平面
;(2)建立空间直角坐标系,借助空间向量的坐标形式的运算及空间向量的数量积公式求两个半平面的法向量,再运用向量的数量积公式进行求解:
(Ⅰ)证明:取线段
的中点
,取线段
的中点
,连接
,
,
,则
,
又
,
∴
是平行四边形,故
.
∵
,平面
平面
,平面
平面
,
∴
平面
,而
,
∴
平面
,
∵
平面
,
∴平面
平面
.
(Ⅱ)以
、
、
为
轴,
轴,
轴建立空间直角坐标系
,则
,
,
,
,
,
,
,
设平面
的一个法向量
,
则有
即![]()
令
,则
,
设平面
的一个法向量
,
则有
即![]()
令
,则
,
设二面角
的平面角
,
则
.
![]()
练习册系列答案
相关题目
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差 | 10 | 11 | 13 | 12 | 8 |
发芽数 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注:
)