题目内容
已知数列{an}}满足:a1=| 1 |
| 4 |
| 1 |
| 4 |
(I)令bn=an-
| 1 |
| 2 |
| 1 |
| bn |
(II)求
| lim |
| n→∞ |
分析:(I)由bn=an-
得an=bn+
,代入(1-an)•an+1=
得(bn+1+
)(
-bn)=
,由此能够证明{
}是以-4为首项,以-2为公差的等差数列.
(II)由
=-2n-2,知bn=-
,所以an=
-
=
,由此能求出
an=
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| bn |
(II)由
| 1 |
| bn |
| 1 |
| 2n+2 |
| 1 |
| 2 |
| 1 |
| 2n+2 |
| n |
| 2(n+1) |
| lim |
| n→∞ |
| 1 |
| 2 |
解答:解:(I)由bn=an-
得an=bn+
,
代入(1-an)•an+1=
得(bn+1+
)(
-bn)=
∴
bn+1-bnbn+1-
bn=0,
∴
-
=-2(n∈N*),
∴{
}是以-4为首项,以-2为公差的等差数列.
(II)由(I)可知
=-2n-2,
即bn=-
,
∴an=
-
=
,
∴
an=
| 1 |
| 2 |
| 1 |
| 2 |
代入(1-an)•an+1=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| bn+1 |
| 1 |
| bn |
∴{
| 1 |
| bn |
(II)由(I)可知
| 1 |
| bn |
即bn=-
| 1 |
| 2n+2 |
∴an=
| 1 |
| 2 |
| 1 |
| 2n+2 |
| n |
| 2(n+1) |
∴
| lim |
| n→∞ |
| 1 |
| 2 |
点评:本题考查等差数列的证明和数列的极限的求法,解题时要认真审题,注意等差数列性质的灵活运用,合理地进行等价转化.
练习册系列答案
相关题目