题目内容
对于二次函数f(x)=4x2-2(p-2)x-2p2-p+1,若在区间[-1,1]内至少存在一个数c 使得f(c)>0,则实数p的取值范围是______.
二次函数f(x)在区间[-1,1]内至少存在一个实数c,使f(c)>0的否定是:
对于区间[-1,1]内的任意一个x都有f(x)≤0,
∴
即
整理得
解得p≥
,或p≤-3,
∴二次函数在区间[-1,1]内至少存在一个实数c,
使f(c)>0的实数p的取值范围是 (-3,
).
对于区间[-1,1]内的任意一个x都有f(x)≤0,
∴
|
即
|
整理得
|
解得p≥
| 3 |
| 2 |
∴二次函数在区间[-1,1]内至少存在一个实数c,
使f(c)>0的实数p的取值范围是 (-3,
| 3 |
| 2 |
练习册系列答案
相关题目