题目内容
(理科)已知数列{an}的前n项和Sn满足Sn=
(an-1)(a为常数且a≠0,a≠1,n∈N*).
(1)求数列{an}的通项公式;
(2)记bn=
+1,若数列{bn}为等比数列,求a的值;
(3)在满足(2)的条件下,记Cn=
+
,设数列{Cn}的前n项和为Tn,求证:Tn>2n-
.
| a |
| a-1 |
(1)求数列{an}的通项公式;
(2)记bn=
| 2Sn |
| an |
(3)在满足(2)的条件下,记Cn=
| 1 |
| 1+an |
| 1 |
| 1-an+1 |
| 1 |
| 3 |
(1)由(a-1)Sn=aan-a ①
当n≥2时,(a-1)Sn-1=aan-1-a ②
由①-②得n≥2时,(a-1)an=aan-aan-1即an=aan-1
又a1=a≠0
∴数列{an}是以a为首项,a为公比的等比数列
∴an=an
(2)bn=
+1=
(
)n+
b1=3,b2=
,b3=
又b22=b1•b3得(3a+2)2=3(3a2+2a+2)解得a=
又a=
时,bn=3n显然为等比数列
故a=
(3)由(2)得Cn=
+
=2-
又
<
=
<
∴
<
=
<
∴Tn>2n-
当n≥2时,(a-1)Sn-1=aan-1-a ②
由①-②得n≥2时,(a-1)an=aan-aan-1即an=aan-1
又a1=a≠0
∴数列{an}是以a为首项,a为公比的等比数列
∴an=an
(2)bn=
| 2Sn |
| an |
| 2a |
| 1-a |
| 1 |
| a |
| 3a-1 |
| a-1 |
b1=3,b2=
| 3a+2 |
| a |
| 3a2+2a+2 |
| a2 |
又b22=b1•b3得(3a+2)2=3(3a2+2a+2)解得a=
| 1 |
| 3 |
又a=
| 1 |
| 3 |
故a=
| 1 |
| 3 |
(3)由(2)得Cn=
| 3n |
| 3n+1 |
| 3n+1 |
| 3n+1-1 |
| 2(3n-1) |
| (3n+1-1)(3n+1) |
又
| 2(3n-1) |
| (3n+1-1)(3n+1) |
| 2(3n-1) |
| (3n+1-3)(3n+1) |
| ||
| 3n+1 |
| ||
| 3n |
∴
| n |
| i=1 |
| 2(3i-1) |
| (3i+1-1)(3i+1) |
| n |
| i=1 |
| ||
| 3i |
| ||||||
1-
|
| 1 |
| 3 |
∴Tn>2n-
| 1 |
| 3 |
练习册系列答案
相关题目