题目内容
已知数列{an}满足a1=1,a2=2,
=
(n∈N*)
(Ⅰ)若bn=
,求证:数列bn为等差数列;
(Ⅱ)记数列{
}(n∈N*)的前n项和为Sn,若对n∈N*恒有a2-a>Sn+
,求a的取值范围.
| an+1+an |
| an |
| an+2-an+1 |
| an+1 |
(Ⅰ)若bn=
| an+1 |
| an |
(Ⅱ)记数列{
| an |
| an+2 |
| 1 |
| 2 |
分析:(Ⅰ)根据假设,结合
=
(n∈N*),作简单变形,即可证得.
(Ⅱ)由(Ⅰ)知bn=2+(n-1)×2=2n,从而可利用裂项法求和,进而将恒成立问题转化为解不等式即可.
| an+1+an |
| an |
| an+2-an+1 |
| an+1 |
(Ⅱ)由(Ⅰ)知bn=2+(n-1)×2=2n,从而可利用裂项法求和,进而将恒成立问题转化为解不等式即可.
解答:(Ⅰ)证明:令bn=
,则
∵
=
(n∈N*)
∴bn+1-bn=2
∵a1=1,a2=2
∴b1=
=2
∴数列{bn}为以2为首项,2为公差的等差数列;
(Ⅱ)解:由(Ⅰ)知bn=2+(n-1)×2=2n
∴
=
•
=
=
=
(
-
)
∴Sn=
(1-
+
-
+…+
-
)=
(1-
)<
∴a2-a≥
+
∴4a2-4a-3≥0
∴(2a-3)(2a+1)≥0
∴a≥
或a≤-
| an+1 |
| an |
∵
| an+1+an |
| an |
| an+2-an+1 |
| an+1 |
∴bn+1-bn=2
∵a1=1,a2=2
∴b1=
| a2 |
| a1 |
∴数列{bn}为以2为首项,2为公差的等差数列;
(Ⅱ)解:由(Ⅰ)知bn=2+(n-1)×2=2n
∴
| an |
| an+2 |
| an |
| an+1 |
| an+1 |
| an+2 |
| 1 |
| bnbn+1 |
| 1 |
| 4n(n+1) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| 4 |
∴a2-a≥
| 1 |
| 4 |
| 1 |
| 2 |
∴4a2-4a-3≥0
∴(2a-3)(2a+1)≥0
∴a≥
| 3 |
| 2 |
| 1 |
| 2 |
点评:本题以数列递推式为载体,考查构造法证明等差数列,考查裂项法求和,考查解不等式,同时考查了学生分析解决问题的能力.
练习册系列答案
相关题目