题目内容
将函数f (x)=sin2x (x∈R)的图象向右平移
个单位,则所得到的图象对应的函数的一个单调递增区间是( )
| π |
| 4 |
A.(-
| B.(0,
| C.(
| D.(
|
f (x)=sin2x (x∈R)
g(x)=f (x-
)=sin2(x-
)=-cos2x=cos(2x+π )(x∈R),
∵g(x)=cos(2x+π )的单调递增区间由2kπ-π≤2x+π≤2kπ得:kπ-π≤x≤kπ-
(k∈Z).
∴当k=1时,0≤x≤
.而(0,
)⊆[0,
],
故选B.
图象向右平移
| ||
| π |
| 4 |
| π |
| 4 |
∵g(x)=cos(2x+π )的单调递增区间由2kπ-π≤2x+π≤2kπ得:kπ-π≤x≤kπ-
| π |
| 2 |
∴当k=1时,0≤x≤
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
故选B.
练习册系列答案
相关题目