题目内容
已知数列{an}满足an=2an-1+2n-1(n∈N+,且n≥2),a4=81.
(1)求数列的前三项a1,a2,a3;
(2)数列{
}为等差数列,求实数p的值;
(3)求数列{an}的前n项和Sn.
(1)求数列的前三项a1,a2,a3;
(2)数列{
| an+p | 2n |
(3)求数列{an}的前n项和Sn.
分析:(1)利用已知条件直接求出a3,然后求出a2,a1.
(2)通过数列{
}为等差数列,按照等差数列的定义,公差是常数,直接求解p的值.
(3)利用(2)求出通项公式,然后通过错位相减法求出数列{an}的前n项和Sn.
(2)通过数列{
| an+p |
| 2n |
(3)利用(2)求出通项公式,然后通过错位相减法求出数列{an}的前n项和Sn.
解答:解:(1)由an=2an-1+2n-1(n∈N+,且n≥2)得a4=2a3+24-1=81,得a3=33
同理,得a2=13,a1=5…(4分)
(2)对于n∈N,且n≥2,
∵
-
=
=
=1-
又数列{
}为等差数列,∴
-
是与n无关的常数,
∴1+p=0,p=-1…(8分)
(3)由(2)知,等差数列{
}的公差为1,
∴
=
+(n-1)=n+1,得an=(n+1)•2n+1.…(9分)
∴Sn=a1+a2+…+an=2×2+3×22+4×23+…+(n+1)×2n+n,
记Tn=2×2+3×22+4×23+…+(n+1)×2n,则有2Tn=+2×22+3×23+4×24+…+n×2n+(n+1)×2n+1,
两式相减,得 Tn=n×2n+1,
故 Sn=n×2n+1+n=n(2n+1+1).…(13分)
同理,得a2=13,a1=5…(4分)
(2)对于n∈N,且n≥2,
∵
| an+p |
| 2n |
| an-1+p |
| 2n-1 |
| an-2an-1-p |
| 2n |
| 2n-1-p |
| 2n |
| 1+p |
| 2n |
又数列{
| an+p |
| 2n |
| an+p |
| 2n |
| an-1+p |
| 2n-1 |
∴1+p=0,p=-1…(8分)
(3)由(2)知,等差数列{
| an+p |
| 2n |
∴
| an-1 |
| 2n |
| a1-1 |
| 2 |
∴Sn=a1+a2+…+an=2×2+3×22+4×23+…+(n+1)×2n+n,
记Tn=2×2+3×22+4×23+…+(n+1)×2n,则有2Tn=+2×22+3×23+4×24+…+n×2n+(n+1)×2n+1,
两式相减,得 Tn=n×2n+1,
故 Sn=n×2n+1+n=n(2n+1+1).…(13分)
点评:本题考查数列的定义判断等差数列的应用,数列求和的常用方法--错位相减法,考查计算能力.
练习册系列答案
相关题目