题目内容
已知数列{an}满足:a1=2且an+1=
(n∈N*)
(1)求证:数列{
-1}为等比数列,并求数列{an}的通项公式;
(2)证明:
+
+
+…+
<n+2(n∈N*).
| 2(n+1)an |
| an+n |
(1)求证:数列{
| n |
| an |
(2)证明:
| a1 |
| 1 |
| a2 |
| 2 |
| a3 |
| 3 |
| an |
| n |
分析:(1)由题得:an+1(an+n)=2(n+1)an,即anan+1+nan+1=2(n+1)an,故2(
-1)=
-1.由此能够数列{
-1}为等比数列,并能求出数列{an}的通项公式.
(2)由
=1+
,知
+
+
+…+
≤n+
+
+
+…+
,由此能够证明
+
+
+…+
<n+2(n∈N*).
| n+1 |
| an+1 |
| n |
| an |
| n |
| an |
(2)由
| an |
| n |
| 1 |
| 2n-1 |
| a1 |
| 1 |
| a2 |
| 2 |
| a3 |
| 3 |
| an |
| n |
| 1 |
| 20 |
| 1 |
| 21 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| a1 |
| 1 |
| a2 |
| 2 |
| a3 |
| 3 |
| an |
| n |
解答:(本小题满分14分)
解:(1)由题得:an+1(an+n)=2(n+1)an,
即anan+1+nan+1=2(n+1)an,
故2(
-1)=
-1即数列{
-1}为等比数列,…(3分)
∴
-1=(-
)(
)n-1=-(
)n,
∴an=n+
…(7分)
(2)由(1)知
=1+
…(8分)
∴
+
+
+…+
≤n+
+
+
+…+
…(14分)
解:(1)由题得:an+1(an+n)=2(n+1)an,
即anan+1+nan+1=2(n+1)an,
故2(
| n+1 |
| an+1 |
| n |
| an |
| n |
| an |
∴
| n |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴an=n+
| n |
| 2n-1 |
(2)由(1)知
| an |
| n |
| 1 |
| 2n-1 |
∴
| a1 |
| 1 |
| a2 |
| 2 |
| a3 |
| 3 |
| an |
| n |
| 1 |
| 20 |
| 1 |
| 21 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
|
点评:本题考查数列的通项公式的求法,考查数列、不等式知识.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答,注意培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关题目