题目内容

已知函数f(x)=2sin(x+
π
4
)sin(
π
4
-x)+
3
sin2x

(1)求f(x)的最小正周期.
(2)在锐角△ABC中,角A,B,C对应的边分别为a,b,c,且f(C)=1,c=2,sinB=2sinA,求△ABC的面积S.
f(x)=2sin(x+
π
4
)sin(
π
4
-x)+
3
sin2x

=cos
π
2
-cos2x+
3
sin2x
=2sin(2x-
π
3
),
(1)∵ω=2,∴T=
2
=π;
(2)由f(C)=2sin(2C-
π
3
)=1,且C为锐角,
∴C=
π
4

又sinB=2sinA,根据正弦定理得:b=2a,又c=2,
根据余弦定理c2=a2+b2-2ab•cosC得:a2=
20-8
2
17

则△ABC的面积S=
1
2
ab•sinC=
2
2
a2=
10
2
-8
17
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网