题目内容
设数列{bn}的n项和为Sn,且bn=1-2Sn;数列{an}为等差数列,且a5=14,a7=20,.
(1)求数列{bn}的通项公式;
(2)若cn=an•bn,n=1,2,3,…,Tn为数列{cn}的前n项和.求证:Tn<
.
(1)求数列{bn}的通项公式;
(2)若cn=an•bn,n=1,2,3,…,Tn为数列{cn}的前n项和.求证:Tn<
| 7 |
| 4 |
(1)由bn=1-2Sn,令n=1,则b1=1-2S1,又S1=b1
所以b1=
…(2分)
当n≥2时,由bn=2-2Sn,可得bn-bn-1=-2(Sn-Sn-1)=-2bn
即
=
…(4分)
所以{bn}是以b1=
为首项,
为公比的等比数列,
于是bn=
…(6分)
(2)数列{an}为等差数列,公差d=
(a7-a5)=3,可得an=3n-1…(7分)
从而cn=an•bn=(3n-1)•
,
∴Tn=2•
+5•
+8•
+…+(3n-1)•
,
Tn=2•
+5•
+…+(3n-4)•
+(3n-1)•
∴
Tn=2•
+3•+3•
+…+3•
-
-(3n-1)•
=
-
…(11分)
∴Tn=
-
<
.…(12分)
所以b1=
| 1 |
| 3 |
当n≥2时,由bn=2-2Sn,可得bn-bn-1=-2(Sn-Sn-1)=-2bn
即
| bn |
| bn-1 |
| 1 |
| 3 |
所以{bn}是以b1=
| 1 |
| 3 |
| 1 |
| 3 |
于是bn=
| 1 |
| 3n |
(2)数列{an}为等差数列,公差d=
| 1 |
| 2 |
从而cn=an•bn=(3n-1)•
| 1 |
| 3n |
∴Tn=2•
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
| 1 |
| 3n+1 |
∴
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
| 1 |
| 3 |
| 1 |
| 3n+1 |
| 7 |
| 6 |
| 6n+7 |
| 2•3n+1 |
∴Tn=
| 7 |
| 4 |
| 6n+7 |
| 4•3n |
| 7 |
| 4 |
练习册系列答案
相关题目