题目内容
【题目】函数y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分图象如图,则函数表达式为;若将该函数向左平移1个单位,再保持纵坐标不变,横坐标缩短为原来的
倍得到函数g(x)= . ![]()
【答案】y=sin(
x+
);cos
x
【解析】解:根据函数y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分图象,可得
=3﹣1=
,∴ω=
.
再根据五点法作图可得1×
+φ=
,∴φ=
,函数y=sin(
x+
).
将该函数向左平移1个单位,再保持纵坐标不变,可得y=sin[
(x+1)+
]=cos
x的图象;
再把横坐标缩短为原来的
倍得到函数g(x)=cos
x的图象
所以答案是:
;cos
x.
【考点精析】利用函数y=Asin(ωx+φ)的图象变换对题目进行判断即可得到答案,需要熟知图象上所有点向左(右)平移
个单位长度,得到函数
的图象;再将函数
的图象上所有点的横坐标伸长(缩短)到原来的
倍(纵坐标不变),得到函数
的图象;再将函数
的图象上所有点的纵坐标伸长(缩短)到原来的
倍(横坐标不变),得到函数
的图象.
【题目】为研究男女同学空间想象能力的差异,孙老师从高一年级随机选取了20名男生、20名女生,进行空间图形识别测试,得到成绩茎叶图如下,假定成绩大于等于80分的同学为“空间想象能力突出”,低于80分的同学为“空间想象能力正常”. ![]()
(1)完成下面2×2列联表,
空间想象能力突出 | 空间想象能力正常 | 合计 | |
男生 |
|
|
|
女生 |
|
|
|
合计 |
|
|
|
(2)判断是否有90%的把握认为“空间想象能力突出”与性别有关;
(3)从“空间想象能力突出”的同学中随机选取男生2名、女生2名,记其中成绩超过90分的人数为ξ,求随机变量ξ的分布列和数学期望. 下面公式及临界值表仅供参考:
P(X2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |