题目内容

已知数列{an}的前n项和Sn=
n2+3n2

(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)设bn=an•2n,求数列{bn}的前n项和.
分析:(Ⅰ)根据an=
S1,n=1
Sn-Sn-1,n≥2
可求得an,只证an-an-1为常数即可;
(Ⅱ)利用错位相减法可求得前n项和;
解答:(Ⅰ)(1)当n=1时,a1=S1=2,
(2)当n≥2时,an=Sn-Sn-1=
n2+3n
2
-
(n-1)2+3(n-1)
2
=n+1,
又当n=1时满足上式,
∴an=n+1,
∵an-an-1=1,
数列{an}是等差数列.                     
(Ⅱ)bn=an•2n=(n+1)•2n
Tn=2•2+3•22+4•23+…+(n+1)•2n,①
2Tn=2•22+3•23+4•24+…+(n+1)•2n+1,②
①-②得:-Tn=2•2+22+23+…+2n-(n+1)•2n+1
=2+
2(1-2n)
1-2
-(n+1)•2n+1
=-n•2n+1
Tn=n•2n+1
点评:本题考查等差数列的前n项和、错位相减法对数列求和,考查an与Sn的关系,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网