ÌâÄ¿ÄÚÈÝ
2£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©ÖУ¬ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=4cos¦È£®£¨I£©Ð´³öÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨II£©ÉèÖ±ÏßlÓëÇúÏßCÏཻÓÚP£¬QÁ½µã£¬Çó|PQ|µÄÖµ£®
·ÖÎö £¨I£©Ö±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýt£¬ÄÜÇó³öÖ±ÏßlµÄÆÕͨ·½³Ì£»ÇúÏßCµÄ¼«×ø±ê·½³Ìת»¯Îª¦Ñ2=4¦Ñcos¦È£¬ÓÉ´ËÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£®
£¨II£©½«$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$´úÈ루x-2£©2+y2=4£¬µÃ${t^2}-3\sqrt{3}t+5=0$£¬ÓÉ´ËÄÜÇó³ö|PQ|£®
½â´ð ½â£º£¨I£©¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬
¡àÏûÈ¥²ÎÊýtµÃÖ±ÏßlµÄÆÕͨ·½³Ì£º$x-\sqrt{3}y+1=0$
¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=4cos¦È£¬¡à¦Ñ2=4¦Ñcos¦È£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£º£¨x-2£©2+y2=4¡£¨5·Ö£©
£¨II£©½«$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$´úÈ루x-2£©2+y2=4£¬
µÃ${t^2}-3\sqrt{3}t+5=0$£¬
ÉèP£¬QÁ½µãµÄ²ÎÊý·Ö±ðΪt1£¬t2£¬Ôò${t_1}+{t_2}=3\sqrt{3}$£¬t1•t2=5£¬
¡à$|{PQ}|=|{{t_1}-{t_2}}|=\sqrt{{{£¨{{t_1}+{t_2}}£©}^2}-4{t_1}{t_2}}=\sqrt{7}$¡£¨10·Ö£©
µãÆÀ ±¾Ì⿼²éÖ±ÏߵįÕͨ·½³ÌºÍÇúÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÏÒ³¤µÄÇ󷨣¬¿¼²é²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮
| A£® | $\frac{1}{2}$ | B£® | $\frac{5}{16}$ | C£® | $\frac{7}{16}$ | D£® | $\frac{11}{16}$ |
| A£® | $\sqrt{2}$ | B£® | 2 | C£® | 2$\sqrt{2}$ | D£® | 3$\sqrt{2}$ |