ÌâÄ¿ÄÚÈÝ

2£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©ÖУ¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=4cos¦È£®
£¨I£©Ð´³öÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨II£©ÉèÖ±ÏßlÓëÇúÏßCÏཻÓÚP£¬QÁ½µã£¬Çó|PQ|µÄÖµ£®

·ÖÎö £¨I£©Ö±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýt£¬ÄÜÇó³öÖ±ÏßlµÄÆÕͨ·½³Ì£»ÇúÏßCµÄ¼«×ø±ê·½³Ìת»¯Îª¦Ñ2=4¦Ñcos¦È£¬ÓÉ´ËÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£®
£¨II£©½«$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$´úÈ루x-2£©2+y2=4£¬µÃ${t^2}-3\sqrt{3}t+5=0$£¬ÓÉ´ËÄÜÇó³ö|PQ|£®

½â´ð ½â£º£¨I£©¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬
¡àÏûÈ¥²ÎÊýtµÃÖ±ÏßlµÄÆÕͨ·½³Ì£º$x-\sqrt{3}y+1=0$
¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=4cos¦È£¬¡à¦Ñ2=4¦Ñcos¦È£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£º£¨x-2£©2+y2=4¡­£¨5·Ö£©
£¨II£©½«$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$´úÈ루x-2£©2+y2=4£¬
µÃ${t^2}-3\sqrt{3}t+5=0$£¬
ÉèP£¬QÁ½µãµÄ²ÎÊý·Ö±ðΪt1£¬t2£¬Ôò${t_1}+{t_2}=3\sqrt{3}$£¬t1•t2=5£¬
¡à$|{PQ}|=|{{t_1}-{t_2}}|=\sqrt{{{£¨{{t_1}+{t_2}}£©}^2}-4{t_1}{t_2}}=\sqrt{7}$¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éÖ±ÏߵįÕͨ·½³ÌºÍÇúÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÏÒ³¤µÄÇ󷨣¬¿¼²é²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø