题目内容

点P是抛物线y2=4x上一点,P到该抛物线焦点的距离为4,则点P的横坐标为(  )
分析:由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,已知P到该抛物线焦点的距离|MF|=4,则M到准线的距离也为2,即点M的横坐标x+
p
2
=4,将p的值代入,进而求出x.
解答:解:∵抛物线y2=4x=2px,
∴p=2,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴P到该抛物线焦点的距离|MF|=4=x+
p
2
=4,
∴x=3,
故选B.
点评:活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网