题目内容
计算
=
.
| lim |
| n→∞ |
| n2+12n |
| 2n2-30 |
| 1 |
| 2 |
| 1 |
| 2 |
分析:先把
等价转化为
,由此能求出结果.
| lim |
| n→∞ |
| n2+12n |
| 2n2-30 |
| lim |
| n→∞ |
1+
| ||
2-
|
解答:解:
=
=
.
故答案为:
.
| lim |
| n→∞ |
| n2+12n |
| 2n2-30 |
=
| lim |
| n→∞ |
1+
| ||
2-
|
=
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |
点评:本题考查数列的极限,解题时要认真审题,先把
等价转化为
,由此能求出结果.
| lim |
| n→∞ |
| n2+12n |
| 2n2-30 |
| lim |
| n→∞ |
1+
| ||
2-
|
练习册系列答案
相关题目