题目内容

4.已知函数$f(x)={\left\{\begin{array}{l}{x^2}-ax,x>0\\{2^x}-1,x≤0\end{array}\right._{\;}}$,若不等式f(x)+1≥0在x∈R上恒成立,则实数a的取值范围为(  )
A.(-∞,0)B.[-2,2]C.[-∞,2]D.[0,2]

分析 由f(x)的解析式可得当x≤0时,2x-1≥-1,结合指数函数的值域即可判断;再由x>0时,x2-ax≥-1,结合参数分离和基本不等式即可得到a的范围.

解答 解:由f(x)≥-1在R上恒成立,可得
当x≤0时,2x-1≥-1,即2x≥0显然成立;
又x>0时,x2-ax≥-1,即为a≤$\frac{{x}^{2}+1}{x}$=x+$\frac{1}{x}$,
由x+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$=2,
当且仅当x=1时取得最小值2,可得a≤2.
综上可得a≤2.
故选:C.

点评 本题考查函数恒成立问题的解法,注意运用指数函数的值域和二次不等式的恒成立问题的解法,运用参数分离和基本不等式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网