题目内容
等差数列{an}是递增数列,前n项和为Sn,且a1,a3,a9成等比数列,S5=a52.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=
,求数列{bn}的前99项的和.
解:(1)设数列{an}公差为d(d>0),
∵a1,a3,a9成等比数列,∴a32=a1a9.
(a1+2d)2=a1(a1+8d),d2=a1d.
∵d≠0,∴a1=d.①
∵S5=a52,∴5a1+
•d=(a1+4d)2.②
由①②得a1=
,d=
.
∴an=
+(n-1)×
=
n.
(2)bn=
,
∴b1+b2+b3+…+b99=
[99+(1-
)+(
-
)+(
-
)]
=
(100-
)=
.
分析:(1)设出数列的公差,利用等比中项的性质推断出a32=a1a9,利用等差数列的通项公式表示出等式求得a1=d,利用求和公式表示出
S5,建立等式求得a1和d另一等式,联立求得a1和d则数列的通项公式可得.
(2)把(1)中数列{an}的通项公式代入bn,整理后利用裂项法求得数列的前99项的和.
点评:本题主要考查了等差数列的通项公式的求法和前n项的和公式的应用.考查了学生基础知识的综合运用.
∵a1,a3,a9成等比数列,∴a32=a1a9.
(a1+2d)2=a1(a1+8d),d2=a1d.
∵d≠0,∴a1=d.①
∵S5=a52,∴5a1+
由①②得a1=
∴an=
(2)bn=
∴b1+b2+b3+…+b99=
=
分析:(1)设出数列的公差,利用等比中项的性质推断出a32=a1a9,利用等差数列的通项公式表示出等式求得a1=d,利用求和公式表示出
S5,建立等式求得a1和d另一等式,联立求得a1和d则数列的通项公式可得.
(2)把(1)中数列{an}的通项公式代入bn,整理后利用裂项法求得数列的前99项的和.
点评:本题主要考查了等差数列的通项公式的求法和前n项的和公式的应用.考查了学生基础知识的综合运用.
练习册系列答案
相关题目