题目内容
ABC的面积S满足| 3 |
| AB |
| BC |
(1)求θ的取值范围.
(2)求函数f(θ)=sin2θ+2sinθcosθ+3cos2θ的最小值.
分析:(1)数量积列等式,三角形面积列不等式,消元可解θ的取值范围.
(2)通过三角函数的基本关系,以及二倍角公式化简函数f(θ),根据θ的取值范围,求最小值.
(2)通过三角函数的基本关系,以及二倍角公式化简函数f(θ),根据θ的取值范围,求最小值.
解答:解:(1)由题意知:
•
=|
||
|cosθ=6,①
S=
|
||
|sin(π-θ)
=
|
||
|sinθ,②
②÷①得
=
tanθ,即3tanθ=S.
由
≤S≤3,得
≤3tanθ≤3,即
≤tanθ≤1.
又θ为
与
的夹角,
∴θ∈[0,π],∴θ∈[
,
].
(2)f(θ)=sin2θ+2sinθcosθ+3cos2θ
=1+sin2θ+2cos2θ
=2+sin2θ+cos2θ
=2+
sin(2θ+
).
∵θ∈[
,
],∴2θ+
∈[
,
].
∴当2θ+
=
,θ=
时,f(θ)取最小值3.
| AB |
| BC |
| AB |
| BC |
S=
| 1 |
| 2 |
| AB |
| BC |
=
| 1 |
| 2 |
| AB |
| BC |
②÷①得
| S |
| 6 |
| 1 |
| 2 |
由
| 3 |
| 3 |
| ||
| 3 |
又θ为
| AB |
| BC |
∴θ∈[0,π],∴θ∈[
| π |
| 6 |
| π |
| 4 |
(2)f(θ)=sin2θ+2sinθcosθ+3cos2θ
=1+sin2θ+2cos2θ
=2+sin2θ+cos2θ
=2+
| 2 |
| π |
| 4 |
∵θ∈[
| π |
| 6 |
| π |
| 4 |
| π |
| 4 |
| 7π |
| 12 |
| 3π |
| 4 |
∴当2θ+
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
点评:本题考查平面向量数量积的运算,三角函数的最值,三角函数的基本关系,二倍角公式等知识,是中档题.
练习册系列答案
相关题目