题目内容
设a为实数,记函数
的最大值为g(a).
(1)设t=
,求t的取值范围,并把f(x)表示为t的函数m(t);
(2)求g(a);
(3)试求满足
的所有实数a.
(1)m(t)=
,
(2)
=![]()
(3)
或![]()
解析:
(1)∵
,∴要使
有意义,必须
且
,即![]()
∵
,且
……① ∴
的取值范围是
。
由①得:
,∴![]()
,
。
(2)由题意知
即为函数![]()
,
的最大值,
∵直线
是抛物线![]()
的对称轴,∴可分以下几种情况进行讨论:
1)当
时,函数
,
的图象是开口向上的抛物线的一段,
由
知
在
上单调递增,故![]()
![]()
;
2)当
时,
,
,有
=2;
3)当
时,,函数
,
的图象是开口向下的抛物线的一段,
若![]()
即
时,![]()
,
若![]()
即
时,![]()
,
若![]()
即
时,![]()
![]()
.
综上所述,有
=
.
(3)当
时,![]()
![]()
;
当
时,
,
,∴
,
![]()
,故当
时,![]()
;
当
时,
,由![]()
知:![]()
,故
;
当
时,
,故
或
,从而有
或
,
要使![]()
,必须有
,
,即
,
此时,![]()
。
综上所述,满足
的所有实数a为:
或
.
练习册系列答案
相关题目