题目内容
(1)已知α,β为锐角,且cosα=
,cos(α+β)=-
,求β;
(2)已知tan(
+α)=
,求
的值.
| 1 |
| 7 |
| 11 |
| 14 |
(2)已知tan(
| π |
| 4 |
| 1 |
| 2 |
| sin2α-cos2α |
| 1+cos2α |
分析:(1)由已知利用同角基本关系可求sinα,sin(α+β),利用sinβ=sin[(α+β)-α]=sin(α+β)cosα-sinαcos(α+β)可求sinβ,进而可求
(2)由tan(
+α)=
,结合两角和的正切公式可求tanα,然后把所求式子利用二倍角公式进行化简代人可求
(2)由tan(
| π |
| 4 |
| 1 |
| 2 |
解答:解:(1)∵α,β为锐角,且cosα=
,cos(α+β)=-
,
∴sinα=
=
,sin(α+β)=
=
∴sinβ=sin[(α+β)-α]=sin(α+β)cosα-sinαcos(α+β)
=
×
-
×(-
)
=
∴β=60°
(2)∵tan(
+α)=
,
∴
=
∴tanα=-
∴
=
=
=2tanα-
=-
| 1 |
| 7 |
| 11 |
| 14 |
∴sinα=
1-
|
4
| ||
| 7 |
1-(-
|
5
| ||
| 14 |
∴sinβ=sin[(α+β)-α]=sin(α+β)cosα-sinαcos(α+β)
=
5
| ||
| 14 |
| 1 |
| 7 |
4
| ||
| 7 |
| 11 |
| 14 |
=
| ||
| 2 |
∴β=60°
(2)∵tan(
| π |
| 4 |
| 1 |
| 2 |
∴
| 1+tanα |
| 1-tanα |
| 1 |
| 2 |
∴tanα=-
| 1 |
| 3 |
∴
| sin2α-cos2α |
| 1+cos2α |
| 2sinαcosα-cos2α |
| 2cos2α |
| 2sinα-cosα |
| 2cosα |
=2tanα-
| 1 |
| 2 |
| 7 |
| 6 |
点评:本题主要考查了同角平方关系,和差角公式及二倍角公式的综合应用,解题的关键是熟练掌握基本公式
练习册系列答案
相关题目