题目内容
设二次函数f(x)=ax2+bx+c(a>b>c),已知f(1)=0,且存在实数m,使f(m)=-a.
(1)试推断f(x)在区间[0,+∞)上是否为单调函数,并说明你的理由;
(2)设g(x)=f(x)+bx,对于x1,x2∈R,且x1≠x2,若g(x1)=g(x2)=0,求|x1-x2|的取值范围;
(3)求证:f(m+3)>0.
答案:
解析:
解析:
|
解(1) (2)据题意x1.x2是方程 (3) |
练习册系列答案
相关题目