题目内容
已知函数f(x)=a(cos2
+
sinx)+b.
(1)当a=2时,求函数f(x)的单调递减区间;
(2)当a<0,且x∈[
,π]时,f(x)的值域为[4,6],求a,b的值.
| x |
| 2 |
| 1 |
| 2 |
(1)当a=2时,求函数f(x)的单调递减区间;
(2)当a<0,且x∈[
| π |
| 2 |
f(x)=a(cos2
+
sinx)+b=
(cosx+sinx)+
+b=
sin(x+
)+
+b,
(1)当a=2时,f(x)=
sin(x+
)+b+1,
令2kπ+
≤x+
≤2kπ+
,(k∈Z),解得:2kπ+
≤x≤2kπ+
,(k∈Z),
则函数f(x)的单调递减区间为[2kπ+
,2kπ+
](k∈Z);
(2)∵x∈[
,π],∴x+
∈[
,
],
∴sin(x+
)∈[-
,
],
∵a<0,
∴
,
解得:a=-2,b=6.
| x |
| 2 |
| 1 |
| 2 |
| a |
| 2 |
| a |
| 2 |
| ||
| 2 |
| π |
| 4 |
| a |
| 2 |
(1)当a=2时,f(x)=
| 2 |
| π |
| 4 |
令2kπ+
| π |
| 2 |
| π |
| 4 |
| 3π |
| 2 |
| π |
| 4 |
| 5π |
| 4 |
则函数f(x)的单调递减区间为[2kπ+
| π |
| 4 |
| 5π |
| 4 |
(2)∵x∈[
| π |
| 2 |
| π |
| 4 |
| 3π |
| 4 |
| 5π |
| 4 |
∴sin(x+
| π |
| 4 |
| ||
| 2 |
| ||
| 2 |
∵a<0,
∴
|
解得:a=-2,b=6.
练习册系列答案
相关题目
已知函数f(x)=a-
,若f(x)为奇函数,则a=( )
| 1 |
| 2x+1 |
A、
| ||
| B、2 | ||
C、
| ||
| D、3 |