题目内容

在△ABC中,角A、B、C所对边分别为a,b,c,已知tanA=
1
2
,tanB=
1
3
,且最长边的边长为l,
求:
(1)角C的大小;
(2)△ABC最短边的长.
(1)tanC=tan[π-(A+B)]
=-tan(A+B)=-
tanA+tanB
1-tanAtanB
=-
1
2
+
1
3
1-
1
2
×
1
3
=-1

∵0<C<π,∴C=
4

(2)∵0<tanB<tanA,
∴A、B均为锐角,则B<A,
又C为钝角,∴最短边为b,最长边长为c,
tanB=
1
3
,解得sinB=
10
10

b
sinB
=
c
sinC

b=
c•sinB
sinC
=
10
10
2
2
=
5
5
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网