题目内容
设数列{an}是公差为d,且首项为a0=d的等差数列,求和:Sn+1=a0
+a1
+…+an
.
| C | 0n |
| C | 1n |
| C | nn |
由数列{an}是公差为d,且首项为a0=d的等差数列
得:an=a0+(n+1-1)d=(n+1)d;
∴Sn+1=a0
+a1
+…+an
,
又Sn+1=an
+an-1
+…+a0
=an
+an-1
+…+a0
,
∴2Sn+1=(a0+an)C
+(a1+an-1)
+…+(an+a0)
=(a0+an)(
+
+…+
)=(a0+an)2n
∴Sn+1=(a0+an)•2n-1.
得:an=a0+(n+1-1)d=(n+1)d;
∴Sn+1=a0
| C | 0n |
| C | 1n |
| C | nn |
又Sn+1=an
| C | nn |
| C | n-1n |
| C | 0n |
=an
| C | 0n |
| C | 1n |
| C | nn |
∴2Sn+1=(a0+an)C
| 0n |
| C | 1n |
| C | nn |
=(a0+an)(
| C | 0n |
| C | 1n |
| C | nn |
∴Sn+1=(a0+an)•2n-1.
练习册系列答案
相关题目