题目内容
(2013•闵行区一模)设数列{an}的各项均为正数,前n项和为Sn,已知4Sn=
+2an+1(n∈N*)
(1)证明数列{an}是等差数列,并求其通项公式;
(2)是否存在k∈N*,使得Sk2=
,若存在,求出k的值;若不存在请说明理由;
(3)证明:对任意m、k、p∈N*,m+p=2k,都有
+
≥
.
| a | 2 n |
(1)证明数列{an}是等差数列,并求其通项公式;
(2)是否存在k∈N*,使得Sk2=
| a | 2 k+2048 |
(3)证明:对任意m、k、p∈N*,m+p=2k,都有
| 1 |
| Sm |
| 1 |
| Sp |
| 2 |
| Sk |
分析:(1)首先在递推式中取n=1求出a1,再取n=n+1得另一递推式,两式作差后可得到数列是等差数列,从而可求通项公式;
(2)假设存在k∈N*,使得Sk2=
,代入通项公式和前n项和公式后可求k的值;
(3)由等差数列的前n项和求得Sm,Sp,Sk,把要证明的不等式作差后利用基本不等式放缩后可得结论.
(2)假设存在k∈N*,使得Sk2=
| a | 2 k+2048 |
(3)由等差数列的前n项和求得Sm,Sp,Sk,把要证明的不等式作差后利用基本不等式放缩后可得结论.
解答:(1)解:∵4Sn=
+2an+1,
∴当n≥2时,4Sn-1=
+2an-1+1.
两式相减得4an=
-
+2an-2an-1,
∴(an+an-1)(an-an-1-2)=0
∵an>0,∴an-an-1=2,
又4S1=
+2a1+1,∴a1=1
∴{an}是以a1=1为首项,d=2为公差的等差数列.
∴an=a1+(n-1)d=2n-1;
(2)解:由(1)知Sn=
=n2,
假设正整数k满足条件,
则(k2)2=[2(k+2048)-1]2
∴k2=2(k+2048)-1,
解得k=65;
(3)证明:由Sn=n2得:Sm=m2,Sk=k2,Sp=p2
于是
+
-
=
+
-
=
∵m、k、p∈N*,m+p=2k,
∴
=
≥
=0.
∴
+
≥
.
| a | 2 n |
∴当n≥2时,4Sn-1=
| a | 2 n-1 |
两式相减得4an=
| a | 2 n |
| a | 2 n-1 |
∴(an+an-1)(an-an-1-2)=0
∵an>0,∴an-an-1=2,
又4S1=
| a | 2 1 |
∴{an}是以a1=1为首项,d=2为公差的等差数列.
∴an=a1+(n-1)d=2n-1;
(2)解:由(1)知Sn=
| (1+2n-1)n |
| 2 |
假设正整数k满足条件,
则(k2)2=[2(k+2048)-1]2
∴k2=2(k+2048)-1,
解得k=65;
(3)证明:由Sn=n2得:Sm=m2,Sk=k2,Sp=p2
于是
| 1 |
| Sm |
| 1 |
| Sp |
| 2 |
| Sk |
| 1 |
| m2 |
| 1 |
| p2 |
| 2 |
| k2 |
| k2(p2+m2)-2m2p2 |
| m2p2k2 |
∵m、k、p∈N*,m+p=2k,
∴
| k2(p2+m2)-2m2p2 |
| m2p2k2 |
=
(
| ||
| m2p2k2 |
| mp×2pm-2m2p2 |
| m2p2k2 |
∴
| 1 |
| Sm |
| 1 |
| Sp |
| 2 |
| Sk |
点评:本题考查了利用递推式求数列的通项公式,考查了利用作差法证明不等式,解答此题的关键是利用基本不等式进行放缩,此题是中档题.
练习册系列答案
相关题目