题目内容

有4个不同的球,4个不同的盒子,现在要把球全部放入盒内.
(1)共有多少种放法?(用数字作答)
(2)恰有一个盒不放球,有多少种放法?(用数字作答)
(3)恰有两个盒不放球,有多少种方法?(用数字作答)
(1)每个球都有4种方法,故有4×4×4×4=256种
(2)四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒,说明恰有一个盒子中有2个小球,
从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,故共有C42A43=144种不同的放法.
(3)四个球分为两组有两种分法,(2,2),(3,1)
若两组每组有两个球,不同的分法有
C24
A22
=3种,恰有两个盒子不放球的不同放法是3×A42=36种
若两组一组为3,一组为1个球,不同分法有C43=4种恰有两个盒子不放球的不同放法是4×A42=48种
综上恰有两个盒子不放球的不同放法是36+48=84种
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网