题目内容

设数列{an}的前n项和为Sn,已知数列{an}的各项都为正数,且对任意n∈N*都有2pSn=an2+pan(其中p>0为常数)
(1)求数列{an}的通项公式;
(2)若对任意n∈N*都有
1
S1
+
1
S2
+
…+
1
Sn
<1成立,求p的取值范围.
(1)当n=1时,2pS1=a12+pa1,∴a1=p,
∵2pSn=an2+pan,∴n≥2时,2pSn-1=an-12+pan-1
两式相减可得p(an+an-1)=(an-an-1)(an+an-1
∵an+an-1>0,∴an-an-1=p
∴数列{an}是首项和公差都为p的等差数列
∴an=np;
(2)由(1)知Sn=
n(p+np)
2
,∴
1
Sn
=
2
p
(
1
n
-
1
n+1
)

1
S1
+
1
S2
+
…+
1
Sn
=
2
p
(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)=
2
p
(1-
1
n+1
)
=
2
p
n
n+1

∵对任意n∈N*都有
1
S1
+
1
S2
+
…+
1
Sn
<1成立,
2
p
n
n+1
<1

n
n+1
p
2

n
n+1
<1

p
2
≥1,即p≥2.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网