题目内容
设数列{an}的前n项和为Sn,已知数列{an}的各项都为正数,且对任意n∈N*都有2pSn=an2+pan(其中p>0为常数)
(1)求数列{an}的通项公式;
(2)若对任意n∈N*都有
+
+…+
<1成立,求p的取值范围.
(1)求数列{an}的通项公式;
(2)若对任意n∈N*都有
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
(1)当n=1时,2pS1=a12+pa1,∴a1=p,
∵2pSn=an2+pan,∴n≥2时,2pSn-1=an-12+pan-1,
两式相减可得p(an+an-1)=(an-an-1)(an+an-1)
∵an+an-1>0,∴an-an-1=p
∴数列{an}是首项和公差都为p的等差数列
∴an=np;
(2)由(1)知Sn=
,∴
=
(
-
)
∴
+
+…+
=
(1-
+
-
+…+
-
)=
(1-
)=
•
∵对任意n∈N*都有
+
+…+
<1成立,
∴
•
<1
∴
<
∵
<1
∴
≥1,即p≥2.
∵2pSn=an2+pan,∴n≥2时,2pSn-1=an-12+pan-1,
两式相减可得p(an+an-1)=(an-an-1)(an+an-1)
∵an+an-1>0,∴an-an-1=p
∴数列{an}是首项和公差都为p的等差数列
∴an=np;
(2)由(1)知Sn=
| n(p+np) |
| 2 |
| 1 |
| Sn |
| 2 |
| p |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 2 |
| p |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 2 |
| p |
| 1 |
| n+1 |
| 2 |
| p |
| n |
| n+1 |
∵对任意n∈N*都有
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
∴
| 2 |
| p |
| n |
| n+1 |
∴
| n |
| n+1 |
| p |
| 2 |
∵
| n |
| n+1 |
∴
| p |
| 2 |
练习册系列答案
相关题目