题目内容
(本题满分12分,每小题各6分)
(1)不用计算器计算:
(2)已知,求的解析式
解:(1)原式
(2)令,则
那么
因此(也可以采用“配凑法”)
(本题满分12分,每小题6分)
(1)若为基底向量,且若A、B、D三点共线,求实数k的值;
(2)用“五点作图法”在已给坐标系中画出函数一个周期内的简图,并指出该函数图象是由函数的图象进行怎样的变换而得到的?
(本题满分12分,每一问6分)
如图,弧是半径为的半圆,为直径,点为弧的中点,点和点为线段的三等分点,线段与弧交于点,且,平面外一点满足平面,。
⑴证明:;
⑵ 将(及其内部)绕所在直线旋转一周形成一几何体,求该几何体的体积。
本题满分12分,每小题各4分)
已知函数,
(1)若函数的值域为,求实数a的值;
(2)若函数的递增区间为,求实数a的值;
(3)若函数在区间上是增函数,求实数a的取值范围.
(本题满分12分)
我市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a(a>0)件. 通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为x (0<x<1),那么月平均销售量减少的百分率为x2.记改进工艺后,旅游部门销售该纪念品的月平均利润是y(元)
(Ⅰ)写出y与x的函数关系式;
(Ⅱ)改进工艺后,确定该纪念品的销售价,使旅游部门销售该纪念品的月平均利润最大.
求下列各代数式的值(本题满分12分、每小题6分)
(1) (2)
【解】