题目内容
(2009•温州一模)已知△AOB,点P在线段AB上,已知
=m
+4n
,则mn的最大值为
.
| OP |
| OA |
| OB |
| 1 |
| 16 |
| 1 |
| 16 |
分析:由向量共线定理可得,存在实数λ使得
=λ
(0≤λ≤1),而
=
+
=
+ λ
=
+λ(
-
)
=(1-λ)
+λ
,则可得m,n与λ的关系,结合基本不等式可求mn的最大值
| AP |
| AB |
| OP |
| OA |
| AP |
| OA |
| AB |
| OA |
| OB |
| OA |
=(1-λ)
| OA |
| OB |
解答:解:由点P在线段AB上可得A,P,B三点共线
由向量共线定理可得,存在实数λ使得
=λ
(0≤λ≤1)
=
+
=
+ λ
=
+λ(
-
)
=(1-λ)
+λ
∵
=m
+4n
且
,
不共线
∴m=1-λ,4n=λ
∴mn=
(1-λ)λ≤
•(
)2=
故答案为:
由向量共线定理可得,存在实数λ使得
| AP |
| AB |
| OP |
| OA |
| AP |
| OA |
| AB |
| OA |
| OB |
| OA |
=(1-λ)
| OA |
| OB |
∵
| OP |
| OA |
| OB |
| OA |
| OB |
∴m=1-λ,4n=λ
∴mn=
| 1 |
| 4 |
| 1 |
| 4 |
| 1-λ+λ |
| 2 |
| 1 |
| 16 |
故答案为:
| 1 |
| 16 |
点评:本题主要考查了向量共线的定理的应用:若A,B,C三点共线,O为AB外一点,则存在实数λ使得
=λ
+(1-λ)
,注意该结论中的系数的特殊关系(λ+(1-λ)=1)
| OA |
| OB |
| OC |
练习册系列答案
相关题目